
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2013-03-19

Face Tracking User Interfaces Using Vision-Based Consumer Face Tracking User Interfaces Using Vision-Based Consumer

Devices Devices

Norman Villaroman
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Villaroman, Norman, "Face Tracking User Interfaces Using Vision-Based Consumer Devices" (2013).
Theses and Dissertations. 3941.
https://scholarsarchive.byu.edu/etd/3941

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3941?utm_source=scholarsarchive.byu.edu%2Fetd%2F3941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Face Tracking User Interfaces Using Vision-Based Consumer Devices

Norman H. Villaroman

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dale C. Rowe, Chair
Richard G. Helps

William A. Barrett

School of Technology

Brigham Young University

March 2013

Copyright © 2013 Norman H. Villaroman

All Rights Reserved

www.manaraa.com

ABSTRACT

Face Tracking User Interfaces Using Vision-Based Consumer Devices

Norman H. Villaroman

School of Technology, BYU
Master of Science

Some individuals have difficulty using standard hand-manipulated input devices such as

a mouse and a keyboard effectively. For such users who at the same time have sufficient control
over face and head movement, a robust perceptual or vision-based user interface that can track
face movement can significantly help them. Using vision-based consumer devices makes such a
user interface readily available and allows its use to be non-intrusive. Designing this type of user
interface presents some significant challenges particularly with accuracy and usability. This
research investigates such problems and proposes solutions to create a usable and robust face
tracking user interface using currently available state-of-the-art technology. In particular, the
input control in such an interface is divided into its logical components and studied one by one,
namely, user input, capture technology, feature retrieval, feature processing, and pointer
behavior. Different options for these components are studied and evaluated to see if they
contribute to more efficient use of the interface. The evaluation is done using standard tests
created for this purpose. The tests were done by a single user. The results can serve as a
precursor to a full-scale usability study, various improvements, and eventual deployment for
actual use.

The primary contributions of this research include a logical organization and evaluation
of the input process and its different components in face tracking user interfaces, a common
library for computer control that can be used by various face tracking engines, an adaptive
pointing input style that makes pointing using natural movement easier, and a test suite that can
be used to measure performance of various user interfaces for desktop systems.

Keywords: face, detection, tracking, filters, accessibility, assistive technology, depth, perceptual
user interface, interface design, HCI, consumer devices, computer input, computer vision, Kinect

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1 INTRODUCTION ... 1

1.1 Real-World Problem ... 1

1.2 Proposed User Interface .. 2

1.3 Technical Problem .. 4

1.3.1 Control in Higher Resolution Space ... 4

1.3.2 Noise ... 5

1.3.2.1 Capture Technology .. 5

1.3.2.2 Design and Implementation .. 7

1.3.3 Retrieval of Feature Characteristics .. 8

1.3.3.1 Feature Detection .. 8

1.3.3.2 Feature Tracking ... 8

1.3.3.3 Head Pose Estimation ... 9

1.3.3.4 Face Gesture Detection ... 9

1.4 Scope and Limitation .. 9

1.5 Research Hypotheses .. 11

2 LITERATURE AND TECHNOLOGY REVIEW ... 12

2.1 Hands-Free User Interfaces .. 12

2.1.1 Face Tracking .. 12

2.1.1.1 Eye Tracking ... 14

2.1.2 Other Modalities ... 15

2.2 Capture Technology .. 15

2.3 Computer Vision Algorithms.. 16

www.manaraa.com

iv

2.4 Vision Processing Libraries .. 18

3 DESIGN, IMPLEMENTATION, AND EVALUATION .. 20

3.1 Development Setup ... 20

3.2 Input Components ... 21

3.2.1 User Input .. 21

3.2.1.1 Pointer Control .. 22

3.2.1.2 Selection Control and Other Commands .. 25

3.2.2 Capture Technology .. 27

3.2.2.1 2D Image Cameras .. 28

3.2.2.2 Consumer Depth Sensors .. 28

3.2.2.3 Sensor Fusion (Depth and Color) ... 29

3.2.3 Feature Retrieval ... 30

3.2.3.1 Detection ... 31

3.2.3.2 Tracking .. 33

3.2.3.3 Head Pose Estimation ... 34

3.2.3.4 Face Tracking Engines .. 35

3.2.4 Feature Data Processing .. 43

3.2.5 Computer Input / Pointer Behavior ... 46

3.2.6 Summary of Input Components .. 48

3.3 Software Design .. 49

3.4 Evaluation ... 51

3.4.1 Point Spread of Stationary Head ... 52

3.4.2 Speed Pointing .. 53

3.4.3 Speed Typing .. 55

4 RESULTS AND ANALYSIS ... 58

www.manaraa.com

v

4.1 User Input ... 59

4.2 Face Tracking Engine ... 60

4.3 Filters .. 65

4.4 Computer Input/Pointer Behavior ... 68

4.5 Summary of Results .. 69

5 CONCLUSION AND FUTURE WORK .. 75

REFERENCES .. 78

www.manaraa.com

vi

LIST OF TABLES

Table 1-1: List of Hypotheses ..11

Table 3-1: List of Options and Possible Combinations ...49

Table 4-1: User Input Speed Pointing Results ...59

Table 4-2: Comparison of Face Tracking Engines ..61

Table 4-3: Comparison of Head Pose Estimation of MSFT and FaceAPI64

Table 4-4: Comparison of Feature Filters ..66

Table 4-5: Comparison of Pointer Behavior Options ..68

Table 4-6: Results by Hypotheses ..70

Table 4-7: Best Possible Combination from Results ...73

Table 4-8: Comparison with Existing Solutions ..73

www.manaraa.com

vii

LIST OF FIGURES

Figure 1-1: Face Area and Movement Span ..5

Figure 1-2: Microsoft Kinect Sensor Components Vision Processing6

Figure 3-1: Input Components ...21

Figure 3-2: User Input Options ..22

Figure 3-3: Candide-3 Face Mask..27

Figure 3-4: Face Detection and Tracking Using the MS Face Tracking SDK37

Figure 3-5: Face Detection and Tracking Using FaceAPI ...39

Figure 3-6: Head Detection and Pose Estimation Using Random Forests (DRRF)40

Figure 3-7: Face Detection Using the Haar Cascade Classifier ...42

Figure 3-8: Pointer Movement Options ...46

Figure 3-9: Face Tracking User Interface Application Diagram ...50

Figure 3-10: Input Data Process (UML Sequence Diagram) ...51

Figure 3-11: Pointer Spread Test ...53

Figure 3-12: Speed Pointer Test ..54

Figure 3-13: Speed Typing Test - Before Start ..56

Figure 3-14: Speed Typing Test - Test Ongoing ...57

Figure 4-1: Comparison of Filter Performance from a Sample of Generated Points66

www.manaraa.com

1

1 INTRODUCTION

Users with certain disabilities may find it very difficult, if not totally impossible, to use

standard input devices such as the ubiquitous mouse and keyboard. The user interface (UI)

described in this thesis is one in which users can provide pointer and selection control to a

computer just by using natural head and face movements captured by vision-based consumer

devices. Because it is enabled by computer vision technology, this kind of user interface is

sometimes called a perceptual user interface (PUI). This section aims to define the purpose of

this research by discussing the real-world problem that drives this research and the technical

problems that this research aims to address.

1.1 Real-World Problem

Current solutions for computer control that are available to users who do not have full

control of their hands are not perfect. These solutions employ different modalities such as

computer vision, physical manipulation, speech, bio-electric signals, and others that are

controlled by other parts of the body that these users can control. These different modalities each

have their own advantages and disadvantages. From personal use, interviews with users and

assistance providers, some of these solutions are not very robust, require intervention of a helper,

require expensive and specialized machines, or are awkward to use, although some have been

found to be satisfactory. (Betke et al. 2002, 1-10; Gips and Olivieri 1996; Instruments 2012;

www.manaraa.com

2

Point 2012; WebAIM 2012) For example, the use of mouth sticks or head wands, though cheap,

may require help with putting on the device and the movement can be cumbersome. Using bio-

electric signals also requires a helper to put on attachments and specially prepared equipment,

although this is usually reserved for people who have difficulty moving even their heads. Some

users have reported speech recognition failure with various speech recognition programs. Some

staff members at the Utah Center for Assistive Technology are of the opinion that Dragon

Naturally Speaking is one of the best solutions for using speech recognition for computer control

particularly when the software has been sufficiently trained. While it allows direct selection of

form controls on the screen conveniently, pointing operations, when necessary, are unnatural and

take longer than spatial gestures (e.g. "go down... down more..."). The same staff members also

indicated that the best solution they have for head controlled mouse is the HeadMouse Extreme

for its combination of value (995 USD), accuracy, and relative convenience. With it, a reflective

dot placed on the head is tracked and the device communicates to the computer as if it is a

physical mouse. Selection or "clicks" are done with a separate physical switch. The findings of

this research should contribute to a solution that is superior to this or to other comparable

technology in usability or robustness.

1.2 Proposed User Interface

For users who have a sufficient degree of control of their heads, some of these challenges

can be addressed by a readily available and robust face tracking user interface. This form of user

interface uses head pose to control a computer pointer and face gestures, along with several other

alternatives, to make selections or special commands. Head movement is natural and happens

automatically with normal usage of a computer. It should be noted that this user interface is not

new.(Gorodnichy and Roth 2004, 931-942; Hunke and Waibel 1994, 1277-1281 vol.2; Varona et

www.manaraa.com

3

al. 2008, 357-374) The advancement of technology may enable such interfaces to be more usable

and practical, which is the object of this research.

I set the following design requirements for this user interface which are based on

usability issues from existing solutions and present improvements to such. These requirements

guided the selection of the design options evaluated and their implementation. These

requirements are similar to those in my previously published work. (Villaroman 2012, 297-298)

• Input should be completely controllable by natural face movements that do not require

the movement of the torso.

• Feature detection and tracking should be robust and accurate enough that it doesn't

require multiple or prolonged attempts to accomplish simple input operations.

• Aside from the initial hardware and software installation, normal usage (including

starting and stopping) should not require the intervention of a helper and should only

require minimal effort.

• Operation should be unobtrusive and does not involve having to wear a device or a

paraphernalia

• Operation should be robust to some variance in the location of the user's face relative to

the screen

• Can be used with a wide variety of existing technology and applications

• If necessary, calibration is only done during setup but not regularly under normal

operation.

The target system of control is a computer running Windows 7. This platform was chosen

because it has a wide user base and it allows the use of various technology options (e.g. MS Face

www.manaraa.com

4

Tracking SDK, MS Kinect for Windows SDK) in the implementation of the user interface in

addition to other popular cross-platform libraries (e.g. OpenCV, OpenNI, etc.)

1.3 Technical Problem

The primary challenges of face tracking user interfaces - or natural user interfaces in

general - are that of control accuracy, reliability, and design. This research aims to provide

solutions to these challenges by exploring different design and implementation options and how

they affect the accuracy and reliability of this user interface. This primary problem can be further

divided into technical sub-problems discussed in the following sections.

1.3.1 Control in Higher Resolution Space

Face movement is minimal when compared to the entire field-of-view of the camera and

it can be a challenge when data from such a small region will be interpreted to control a pointer

in higher resolution screens. For example, at about 2.5 feet from the sensor, yaw and pitch

movements of a face of a certain user captured by a 640x480 sensor and that still allows him to

view the computer screen without noticeable strain covers about 100x80 pixels in the field of

view. (See Figure 1-1) The challenge then is to determine the best way to use the data in this

small region to control a pointer in a screen where a 1920x1080 resolution setting is not

uncommon.(Villaroman and Rowe 2012, 57-62)

www.manaraa.com

5

Figure 1-1: Face Area and Movement Span

1.3.2 Noise

Noise is data that is irrelevant to the purpose of a process and causes inaccuracy or poor

performance in the objectives of that process. It is naturally introduced in the different

components of the user interface. Some of the major sources of noise are discussed in the

following sections.

1.3.2.1 Capture Technology

Capture technology is defined here as the set of hardware and software that allows the

capture of raw data and processing it for delivery to the next layer in the application architecture.

Two classes of technology under this category are regular 2D image cameras for computers (i.e.

webcams) and the recently popularized (gwr_press 2011) consumer depth sensors (e.g. Microsoft

Two feet from a webcam with resolution 640x480 px
(image pre-processed for easier viewing)

www.manaraa.com

6

Kinect, ASUS Xtion PRO) that are able to retrieve depth maps of an indoor scene in relatively

good detail for their price.

Color/intensity image data is susceptible to illumination variation, camouflaging, and the

presence of irrelevant objects. Noise on the pixel location of various objects on the scene is

minimal and such cameras can capture images in a wide variety of resolutions.

In November 2010, Microsoft (MS) released a gaming visual sensor for its Xbox 360

platform called the Microsoft Kinect for Xbox, or simply, Kinect. This sensor is based on Light

Coding technology by PrimeSense Ltd. More about this technology is discussed in Section

3.2.2.2. It produces noise that makes fine movement hard to detect and measure in its generated

depth images. This noise is also more pronounced on the edges of objects making edges

unreliable for precise calculations. In addition, surfaces that exhibit high specular reflection as

well as external sources of IR light (e.g. sunlight) will produce erroneous depth readings.

Illustration from a Microsoft web site
(MSDN "Kinect for Windows Sensor Components and Specifications" 2012)

Figure 1-2: Microsoft Kinect Sensor Components Vision Processing

www.manaraa.com

7

Noise is also introduced by various feature detection and tracking algorithms that are

necessary to enable this user interface. Many such methods involve estimation in different ways.

Features are represented in ways that are usually different from the raw data (e.g. color

histogram features). Various machine learning algorithms involved in many classification

methods, by definition, are not able to guarantee accurate classification of data that are not part

of the set that they have been trained on. It is also common for such algorithms to have a trade-

off between accuracy and speed. So when these methods have to run in real-time as they would

need to in a vision-based face tracking user interface, some degree of accuracy may have to be

given up.

1.3.2.2 Design and Implementation

Noise can also come from the design of the application and how it is implemented. Some

design options might require the use of features that introduce more noise than others. (e.g.

Using features in orientation space in addition to or instead of features in pixel space. See

Section 3.2.1.1- Pointer Control)

Implementation can also vary in the way noise is dealt with. For example, filtering out

noise can be done at different stages in the input process and filtering out later in that process

may not be very effective (e.g. filtering the final cursor point instead of the features provided by

the face tracking engine). In addition to its effect on speed, the implementation can affect

accuracy by the way various data are stored (e.g. data types and structures) and processed (e.g.

trigonometric calculation, transformation between different coordinate spaces, etc.). The proper

selection and use of other libraries also contribute to the overall speed and performance of this

UI.

www.manaraa.com

8

1.3.3 Retrieval of Feature Characteristics

At the core of a face tracking user interface is its ability to detect face features and

accurately track them. Thus, it is essential to identify robust algorithms for this purpose and find

or create good implementations of such. Object detection and tracking are widely researched

topic in computer vision. While part of the research reviews algorithms and implementations in

these categories, it is not intended to use nor personally implement these algorithms to perform a

comprehensive comparison. Currently available software libraries that already provide such

functionality were identified and included for review in this research. The following is a

breakdown of the functionality that may be required in a face tracking user interface.

1.3.3.1 Feature Detection

Face features have to be automatically detected to comply with the design requirements

in Section 1.2 - Proposed User Interface. There are different factors involved in the

determination of which features to detect. The proper selection of feature/s to detect guides the

algorithm implementation and is essential in making it robust. These features have to be

represented in different ways (e.g. appearance/image data, statistical data as in histograms, etc.)

and the proper feature representation

1.3.3.2 Feature Tracking

While some detection algorithms can be run in real-time such that they would also

perform tracking at the same time, the use of a good tracking algorithm may be necessary to

make the perceived movement of the face as smooth as the real movement. Tracking algorithms

usually use a priori information to help obtain a good estimate of the next state of the object.

www.manaraa.com

9

1.3.3.3 Head Pose Estimation

Some design options may require the ability to estimate head pose or the direction that

the head is facing. How this pose vector will be calculated in such a way so as to give accurate

and consistent results is not impossible but is still a challenge especially with 2D images where a

slightly rotated head (yaw or pitch) can look almost the same as a front-facing head because of

the lack of real depth perception.

1.3.3.4 Face Gesture Detection

While pointer control alone can be used to perform selection or special commands by

implementing dwell-time selection, it may be more usable to make certain facial gestures be

interpreted as commands. In other words, gestures such as raising the eyebrow, blinking, or

lowering the jaw can trigger selection or other commands. This problem is seen as an extension

to feature detection and tracking so the same algorithms could work here as well. This particular

problem is secondary to the other problems listed and is only included for completeness. The

effectiveness or usability of various face gestures in triggering various special commands is not

part of the research.

1.4 Scope and Limitation

This research is on the investigation of design and implementation options that would

make a usable face tracking UI. Various options will be considered. These options do not

represent the entire span of possibilities but they represent some of the more common or more

sensible candidates.

The focus of this research is on the input side of the user interface. There is no attempt to

create an additional graphical user interface (GUI) component or a visual feedback mechanism

www.manaraa.com

10

for it other than what may already be available from the vision processing libraries or the

operating system. As an example, a custom on-screen keyboard (OSK) will not be implemented

nor a third party version used. As the target system is a personal computer running Windows 7,

the built-in OSK will be used for key entry, which is sufficient for the purpose of this research

and provides other useful capabilities. (e.g. auto-completion, ability to resize, visibility on top of

the Windows logon screen, etc.)

While other modalities such as speech may prove to be a valuable addition to the

interface, the only modality investigated in this research is that of perceived face movement.

Also, while usability is a major consideration in the direction of this research, for practical

research considerations, the focus of the usability tests done is on the ability to point, not on

other convenience features, though some measures were taken for those features.

The outcome of this research is a knowledge set of good design and implementation

options that is backed by quantitative results. In the process, software prototypes will be

implemented that will be used in various tests. Another outcome is the creation and use of a

testing process that will allow the comparison not only of the various combinations of options for

these prototypes but of other similar UI solutions. To limit the scope, the tests done in this

research were done by a single user. This presents some advantages in that the results will less

likely be skewed by human factors that can significantly vary from one user to another.

However, a usability test that includes several users has additional benefits and is deferred to

future work.

www.manaraa.com

11

1.5 Research Hypotheses

Different hypotheses were formulated regarding the effectiveness of various design and

implementation options. These hypotheses are listed below. Some of the terms used are better

explained in their corresponding sections in Chapter 3 so they are not discussed here.

Table 1-1: List of Hypotheses

 Hypotheses Relevant Section

1a
State-of-the-art pose estimation makes pointing more
accurate

3.2.1.1 Pointer
Control

1b
State-of-the-art pose estimation is sufficient for head
pose pointing (user input option)

3.2.1.1 Pointer
Control

2a
Depth data makes detection and tracking of face
features more robust

3.2.2 Capture
Technology

2b
Depth data is necessary to make detection and tracking
of face features more robust

3.2.2 Capture
Technology

3 Tracking is better than rapid detection 3.2.3 Feature Retrieval

4
Current face tracking tech is able to support a robust
face tracking UI

3.2.3.4 Face Tracking
Engines

5
The Kalman filter deals with noise better than an
average filter

3.2.4 Feature Data
Processing

6 Pointing operation is easier when noise is minimized
3.2.4 Feature Data
Processing

7
A Location/differential pointer is easier to use than a
velocity one

3.2.5 Computer Input /
Pointer Behavior

8
A differential pointer reduces the data requirements on
the face tracking engine

3.2.5 Computer Input /
Pointer Behavior

9
External pointing tests can be used to compare
performance

3.4 Evaluation

10
Pointing accuracy can be measured by the stationary
point spread

3.4.1 Point Spread of
Stationary Head

www.manaraa.com

12

2 LITERATURE AND TECHNOLOGY REVIEW

In this section, both published research and some current state-of-the-art technologies that

do not necessarily have associated peer-reviewed publications are discussed.

2.1 Hands-Free User Interfaces

Various solutions exist for users who do not have full control of their hands. Although

this research is on face tracking UI, some existing solutions for other modalities are given as they

provide different ideas that can ultimately help solve the real-world problem for the user. Note

that the literature review for other modalities are not as comprehensive as it is for face tracking

since the purpose for including it is that of completeness rather than focus.

2.1.1 Face Tracking

Face tracking user interfaces are not new with some directly related research done on it as

early as 1994. (Hunke and Waibel 1994, 1277-1281 vol.2) The application SINA

(http://dmi.uib.es/~ugiv/sina/) of Varona et al. detected and tracked the nose from image features

for cursor control and eye winks from color distributions for control commands (although this

wink feature was not observed during testing). (Varona et al. 2008, 357-374) The earlier

application Nouse (http://nouse.ca) of Gorodnichy et al. tracked the nose and eyes as well and

used multiple blinks as control commands. (Gorodnichy and Roth 2004, 931-942) They also

www.manaraa.com

13

proposed and implemented a visual feedback mechanism where a small image follows the cursor

and shows how the system is interpreting the current state of the user's head pose. (Gorodnichy

2006) Morris et al. used skin color to detect the face and the nostrils, producing a system that

they admit is vulnerable to noise from similarly colored regions. (Morris and Chauhan 2006, 62-

80) Chathuranga et al. implemented a system where the nose is tracked for cursor control and

where speech recognition is used for selection. (Chathuranga et al. 2010, 359-364) The Camera

Mouse (http://www.cameramouse.org/) uses correlation to track user-defined and automatically

updating templates to track a small region in a video sequence. (Betke et al. 2002, 1-10) For the

same application, Tu et al. used a 3D model fitted to 2D features (using Least Mean Squared

Error) to track a face using normalized correlation. (Tu et al. 2007, 35-40)

While this research has the same intended application as some of these mentioned works,

it is different in the formal investigation of various design and implementation options of the

entire interface. The advancement of technology to its state today provides additional options

both for design and implementation as well as opportunities for evaluation.

In addition, some commercial solutions available for this same purpose include the

HeadMouse Extreme (Origin Instruments, http://www.orin.com) and the SmartNav

(NaturalPoint, http://www.naturalpoint.com). Both track a reflective dot placed on the user's

face. HeadMouse Extreme is basically a hardware mouse with a video input, tracker, and logic

embedded in the hardware. To the computer it is a mouse so no external software needs to be

installed. The SmartNav also tracks a reflective dot but the input simulation is done through the

Windows API.

The user interface that is the subject of this study is under this same category. The

technologies mentioned here do not completely satisfy the design requirements in Section 1.2

www.manaraa.com

14

Proposed User Interface. For example, the HeadMouse Extreme and the SmartNav require the

user to wear or put on an accessory. CameraMouse requires another person to start tracking for

normal operation. The others that were tried were not robust in the way they detect and track face

features. Setting aside some usability features, some of the technologies mentioned here are good

enough when it comes to performance that they are used for comparison in this research.

2.1.1.1 Eye Tracking

For users with limited head movement, eye tracking may be a better or may even be the

only choice. A common challenge for all eye tracking systems is to address the fact that the

controller is the same as the visual receptor. Some consequences of this include the partial

obstruction of the viewed point by the cursor and the reduced usability or even the total

inoperability caused by an unexpected offset of the tracked point. For example, and as personally

experienced with two eye tracking systems (Tobii PCEye and Dynavox EyeMax), the pointer , in

the process of normal usage, may be set away from the focus of the eye so that one cannot see

the object and point to it at the same time, at which point, the pointer would have to be

recalibrated.

EagleEyes uses electrodes placed on the face to capture electro-oculographic (EOG)

potential and use it to calculate eye gaze.(Gips and Olivieri 1996) Work by Yagi et al. shows

more recent analysis in using EOG signals and provides solutions for the drifting and blinking

problem inherent in such interfaces.(Yagi 2010, 28-32) Vazquez et al. used infrared illumination

where a webcam, infrared LEDs and a 3-axes accelerometer are all put together in a head-

mounted system. (Vazquez et al. 2011, 165-170) Reale et al. used images from a two-camera

system (one for finding the eye and the other for focusing on the eye) to detect eye gaze.(Reale et

al. 2010, 280-285) Heikkil et al. performed a usability study on eye gestures and closures as

www.manaraa.com

15

interaction techniques. (Heikkil et al. 2012, 147-154). Muchun et al. detected eye blinks using

pattern matching and optical flow. (Muchun et al. 2008, 351-356)

2.1.2 Other Modalities

Some solutions are not entirely based on vision techniques but employ other modalities.

Chathuranga et al implemented a system where the nose is tracked for cursor control and speech

recognition is used for selection.(Chathuranga et al. 2010, 359-364) The Vocal Joystick uses

acoustic-phonetic parameters which are more appropriate for continuous input to control a

cursor.(Bilmes et al. 2005, 995-1002) Inhyuk et al used both image observation and EMG signals

from probes attached to the user's neck.(Inhyuk et al. 2003, 1515-1520 vol.1)

Other modalities include physical manipulation using head wands, mouth sticks, manual

switches triggered in variety of ways, and others.(WebAIM 2012)

2.2 Capture Technology

Many perceptual user interfaces primarily use image streams from a regular camera, a

discussion of which is not necessary here. But recent advances in sensor technology have added

a new dimension, literally and figuratively, to vision-based applications that are readily available

to consumers. The launch of the Microsoft Kinect for Xbox (Kinect) in November 2010 spurred

the development of a wide variety of commercial applications and research work. It is based on

Light Coding technology developed by PrimeSense, Ltd. (http://www.primesense.com/) where

structured IR light is used to calculate depth using triangulation. The calculation is done on the

hardware side which off-loads depth calculation from the software side. While various depth

sensors have been used before, the Kinect made a relatively high resolution (640x480) depth

sensor available at a very low price. (PrimeSense 2012) An analysis of the accuracy, resolution,

www.manaraa.com

16

and characteristics of the Kinect sensor itself was made by Khoshelham et al.(Khoshelham and

Elberink 2012, 1437-1454) Aligned color images and a microphone array are also usually

available in such devices allowing multiple modalities to be used for extended or improved

functionality. Since the launch of the original Kinect, a few other similar devices have been

made available to the public. (e.g. ASUS Xtion PRO series, MS Kinect for Windows) Various

frameworks and libraries have also been developed to process data coming from such sensors.

These are discussed in Section 2.4 - Vision Processing Libraries.

2.3 Computer Vision Algorithms

Computer vision algorithms are at the core of perceptual user interfaces. There is a

plethora of research done in the different objectives that this particular user interface require -

namely, face feature detection, tracking, head pose estimation, and face gesture detection. This

review does not intend to give a comprehensive list of research work as that would be practically

impossible given their breadth and depth but some are listed that can potentially be useful in face

tracking user interfaces.

The classic object detection framework of Viola and Jones which uses cascaded

classifiers of Haar-like features using integral images should be mentioned as a landmark work

on real-time detection of various objects, including faces.(Viola and Jones 2001, I-511-I-518

vol.1) Modified census transformation has also been used for face detection and tracking.(Froba

and Ernst 2004, 91-96; Küblbeck and Ernst 2006, 564-572) Some of these works are the basis for

SHORE (Sophisticated High-speed Object Recognition Engine), a proprietary face analysis

library published by Fraunhofer IIS. Active Appearance Models have been used for face tracking

aided by temporal matching and color-based segmentation.(Mingcai et al. 2010, 701-708) This

particular work was used as a basis for the MS Face Tracking (MSFT) SDK.(Smolyanskiy 2012)

www.manaraa.com

17

In another work, AdaBoost was used for face detection and adaptive particle filtering was used

for face tracking.(Zheng and Bhandarkar 2009, 9-27) Local binary patterns and its variants have

also been used as feature vectors using various machine learning algorithms for classification.(Di

et al. 2011, 765-781; Hongliang et al. 2004, 306-309; Toan Thanh et al. 2009, 1-8) Finally, a

combination of some of these methods has very recently been proven to perform face detection

accurately and efficiently.(Pan et al. 2013, 12-28)

Some surveys on object detection are also helpful in understanding the capabilities of

available methods. Some such surveys follow. Zhang et al. published a survey on face detection

in 2010 to update a similar survey by Ming-Hsuan et al. in 2002. (Ming-Hsuan et al. 2002, 34-

58; Zhang and Zhang 2010) The survey on object tracking by Yilmaz et al. also contains a

general survey on object detection that can help in the selection of which feature to detect.

(Yilmaz et al. 2006, 13)

Various tracking methods can be used for faces. Iterative Closest Point (ICP algorithm)

has been used.(Smolyanskiy 2012; Weise et al. 2011, 1-10) Particle filters have also been used

particularly in one case where tracking hypotheses represent particles and multi-scale elastic

matching was used to compute optical flow.(Bhandarkar and Luo 2009, 708-725) Optical flow is

also a common tracking algorithm and in one case a pyramidal implementation of the Lucas-

Kanade algorithm was used to detect and track faces.(Xiaogang and Yanbo 2009, 89-92)

Some works that attempt to detect and track faces and give an estimate of head pose,

aside from those that have already been mentioned include the works of Fanelli et al., Kondori et

al. and Weise et al. to accomplish these objectives using depth data. (Fanelli et al. 2011; Kondori

et al. 2011, 1-4; Weise et al. 2011, 1-10)

www.manaraa.com

18

2.4 Vision Processing Libraries

Some libraries and frameworks have been created to help with processing image and

depth data for use with user interfaces and other applications. An overview of such libraries is

given in this section.

The Kinect sensor was originally designed as gaming paraphernalia for the Microsoft

Xbox. A number of months after that hardware release and an outburst in independent research

that used it,(Adafruit Industries 2010) MS launched the Kinect for Windows SDK

(http://kinectforwindows.com). (Knies 2011) Among many others, it features face tracking,

skeleton tracking (presumably based on pose recognition work from single depth images by

Microsoft Research (Shotton et al. 2011, 1297-1304)), user segmentation, speech processing

using the sensor's microphone array, and various ways to access and register the color, depth,

and IR images.

OpenNI (http://openni.org) is an open source framework that provides an interface that

connects devices, middle-ware, and applications for natural interaction. It is led by a group of

companies as a non-profit organization. It was established after the release of the Kinect which is

perhaps a driver for this initiative given that PrimeSense, the developer of the depth sensing

technology behind Kinect, is part of this group. A middle-ware library called NITE is provided

in this project that features skeleton tracking, user segmentation, hand tracking, and hand gesture

recognition.

OpenKinect (http://openkinect.org) and CL NUI (http://codelaboratories.com) are both

the products of the leading developers in the initial Kinect hacking contest hosted by Adafruit

Industries at its launch.(Adafruit Industries 2010; Villaroman et al. 2011, 227-232) The former is

an open-source project while the latter is not although the binary is available. While these

www.manaraa.com

19

provide developers access to Kinect data and various other features, the Kinect for Windows

SDK and OpenNI remain as the more stable and more developer-friendly solutions.

OpenCV is an open-source, BSD-licensed library for computer vision and machine

learning containing both classic and state-of-the-art algorithms. (http://opencv.org) It has

interfaces for various programming languages (C, C++, Python, and Java) and can run in

Windows, Linux, Android, and Mac OS. It is popular and widely used in the academe and the

industry.

The Point Cloud Library (PCL) is a "standalone, large-scale, open-source project for

2D/3D image and point cloud processing." (http://pointclouds.org) (Rusu and Cousins 2011, 1-4)

It started in March 2011 and has continually progressed ever since with regular development

contributions from "a large number of engineers and scientists from many different

organizations, geographically distributed all around the world". (http://pointclouds.org/about/) It

is able to capture and process point clouds from various sensors, including consumer depth

sensors as defined in this research.

www.manaraa.com

20

3 DESIGN, IMPLEMENTATION, AND EVALUATION

The following sections discuss how the entire input stream of the user interface is divided

into logical components. Different options are then presented for each component. Some

implementation notes are also included on each option to indicate how the prototypes were

written. Finally, the evaluation methods for these options are presented which serve as the basis

for the quantitative results in the following chapter.

3.1 Development Setup

The prototypes were written in Visual C++ (10.0). The development machine is running

on Windows 7 and is powered by an Intel® Core™ i5-2500 (3.3 GHz) quad-core CPU and 8GB

of memory. I designed and developed the main input processing component as a shared library

(DLL). Different projects representing different face tracking engines are set to use the headers

of and link to this main input library. Tests were done on a 23" screen set to 1920x1080. A 2.0

MP Logitech QuickCam Pro 9000 USB camera was used (in 640x480 mode) where a webcam

was needed. Either a Kinect for Xbox or a Kinect for Windows (the sensor that is officially

distributed and supported for use with personal computers) was used where a depth sensor was

needed.

www.manaraa.com

21

3.2 Input Components

The input stream can be divided into the logical components as in my previous work (see

Figure 3-1) but slightly re-worded to be more understandable.(Villaroman and Rowe 2012, 57-

62) These are each discussed in the following sections.

Figure 3-1: Input Components

3.2.1 User Input

This represents how user actions are interpreted as input. The primary control objective

for this user interface is pointer control. Selection and other commands are included only for

completeness.

www.manaraa.com

22

3.2.1.1 Pointer Control

For pointer control, there were three different user input options that were considered -

point from 2D rotation, point from 2D location, and head pose pointing (illustrated in Figure 3-2

and further discussed below). These options are the primary ones that stand when measured

against the design requirements of not having to moving the torso and allowing the user's face to

be at any point in the general vicinity of the workstation.

From left to right: 1) Point from 2D rotation (with interaction zone)

2) Point from 2D location (w/o interaction zone) and 3) head pose pointing

Figure 3-2: User Input Options

The Kinect for Windows Human Interface Guidelines suggests the use of a physical

interaction zone that defines the physical limits of the controlling body part. (Microsoft 2012)

This is implemented by imposing limits on the UI when it comes to the generated feature data.

This is used when it is possible and applicable. It can be implemented in different ways,

depending on the data available and the options selected. The interaction zone appropriately

limits the space for relevant data and so it imposes certain accuracy requirements on the user

interface. Note that different users can have different interaction zones. In a production system,

this interaction zone should be adjustable to meet the needs of different users. For the purposes

of testing and development, this research assumes a physical face rotation limit of limit of ~62°

www.manaraa.com

23

(pitch) and ~39° (yaw) with an aspect ratio of 8:5 calculated from a single user. The virtual

interaction zones were set to be smaller than that limit, considering also that the different

libraries are not expected to be as accurate as real measurement in their various coordinate

spaces.

Hereafter, the term interaction point is a pair of values that can be used to directly set

the actual pointer location on the screen. Where an interaction zone is explicitly set, the

interaction point is defined by the obtained point in reference to the interaction zone.

Point from 2D Rotation - Where head pose is available and accurate enough, the

interaction point can be calculated from the yaw and pitch rotation of the face. The interaction

zone is defined by imposing limits on this rotation. Since the point is calculated from the

orientation of the face, the location of the face is not relevant, thus theoretically allowing the face

to be located anywhere in the vicinity of the workstation without affecting pointer control.

Implementation - The interaction zone limits are angle measures representing the

orientation of the face with origin at the neutral (straight-facing) position. The default values

used for evaluation are ±24° / 0.4 rad for yaw and ±19.2° / 0.32 rad for pitch (MS Face

Tracking/faceAPI). Note that for simplicity, the sensor here is at the center of both the aligned

world coordinate and the camera coordinate spaces. It is at its neutral orientation (facing the

depth axis). In production systems, it is possible for the sensor to have a different orientation and

appropriate measures could be implemented to offset this difference.

Point from 2D Location - For face tracking engines that are not able to provide head

pose estimates, a tracked 2D point (location) on the image can be used. This location should

move changes in the head orientation so this point should be on the surface and not the centroid

of the head which is also made available by some face tracking engines. (e.g. MS Face Tracking)

www.manaraa.com

24

Ideally, another feature data independent from this 2D point (e.g. shoulder or torso)

should be available to be a reference for the interaction zone. If this reference point is not

available, the interaction zone can just be set initially at the beginning of the tracking sequence

and it is fixed for that entire sequence. In the case where the user moves his face outside of this

fixed zone, a special command (see Section 3.2.1.2 - Selection Control and Other Commands)

may be made to re-initialize the interaction zone. Alternatively, the pointer can be set as a

differential pointer (see Section 3.2.5 - Computer Input / Pointer Behavior), which is a setting

that simulates having an actual interaction zone.

The 2D location of a tracked point is very common and is used in many face tracking

user interfaces (e.g. CameraMouse, HeadMouse Extreme, SmartNav, etc.) and other natural user

interfaces in general. As common as this is, using this without any compensation (e.g. setting an

interaction zone, setting for how the pointer moves, etc.) can limit usability.

Implementation - Implementing this can be straightforward. All face tracking engines

reviewed provide a location for the face. The fixed interaction zone should be set in the same

unit as that of the given location. If the point location is given in real-world units, then the size of

the interaction zone can just be explicitly set which does not need to be changed afterwards. (e.g.

a length of 0.16m in real-world coordinates is theoretically the same at different depths) When

the point location is given in camera/view pixels, explicit values cannot be used because it

doesn't scale to the user's location so another pixel-based feature could be used for it to scale

(e.g. if the size of the head is given by the face tracking engine and it is in pixels, set the

interaction zone proportional to the size of the head). If a differential pointer is used, setting this

interaction zone is not necessary. Its implementation is discussed in its own section (Section

3.2.5 - Computer Input / Pointer Behavior).

www.manaraa.com

25

3D Head Pose Pointing - With the advancement of algorithms and technologies that can

perform head pose estimation, head pose can be used to accomplish better designs for face

tracking user interfaces. (Murphy-Chutorian and Trivedi 2009, 607-626) This option uses the 3D

location of the face and the direction of the head pose to calculate where the head is facing or

"pointing" to on the screen. This seems to be closer to the ideal and the more natural option.

However, this option requires a significant level of accuracy for several reasons. "Head pointing"

on the screen limits the total span of rotation because the user can usually rotate his head

comfortably to point outside of the screen so there is less input data to process. In addition, depth

measurement and head pose estimation need to be more accurate which, though techniques and

technology have improved, continue to be a challenge. Head pose estimation will tend to be less

accurate than point tracking because the former tracks a larger set of feature vectors.

Implementation - Head pose pointing as implemented here requires the head's yaw and

pitch rotation, its 3D location, and the size of the screen in the same coordinate space. Using

simple trigonometric rules, the following formula can be obtained:

𝑝𝑥 =
𝑧0 tan𝜃𝑥 + 𝑥0
𝑠𝑐𝑟𝑒𝑒𝑛𝑥

+ 𝑜𝑓𝑓𝑠𝑒𝑡𝑥 (3-1)

In this equation (3-1), 𝑝𝑥 is the location of the point that is pointed to along the x

dimension, 𝑥0, 𝑧0 are the real-world location of the user' head along the x and z (depth)

dimensions, 𝜃𝑥 is the rotation of the head that moves along x, 𝑠𝑐𝑟𝑒𝑒𝑛𝑥 is the size of the screen

along x, and 𝑜𝑓𝑓𝑠𝑒𝑡𝑥 shows where the sensor (origin) is located in reference to the screen.

3.2.1.2 Selection Control and Other Commands

Cursor control by itself can provide selection control based on dwell time which is a

common option in currently available head and eye tracking user interfaces. Dwell time, of

www.manaraa.com

26

necessity, prolongs the usage of a user interface especially in click-typing on OSKs. It can be

problematic with noisy pointer control and/or small targets. This form of trigger is more

vulnerable to the "Midas touch" problem, (Jacob 1991, 152-169) where the user accidentally

triggers commands from natural movement. Although some research shows that calibrating

dwell time on experienced users can increase performance in terms of typing speed, (Majaranta

et al. 2009, 357-360) the ability to perform selection or other commands through means other

than dwelling on a target can increase usability or at least provides other interaction options.

Dwell time can be problematic because it delays the interaction if it's too long or may trigger

more unintentional selection if it's too short. Having other options available would cater to the

preference of a wider user base that will have a variety of abilities, limitations, and preferences.

Examples of these options include opening the mouth, sticking out the tongue, raising

eyebrows, and prolonged or multiple blinks of either or both eyes, among others. However, all

face gestures can be problematic because of Midas touch. Some solutions to this include the

ability to turn on and off the effect of the gesture as in the Snap Clutch of Istance et al.(Istance et

al. 2008, 221-228) and in other commercial eye gaze tracking systems (e.g. Tobii) or use more

deliberate gestures as opposed to involuntary or natural gestures. In addition, retrieval and

processing of feature characteristics (see Section 3.2.3 - Feature Retrieval) should be sufficiently

accurate or these options may render themselves unusable.

Implementation - These options were implemented with the prototype that used MS

Face Tracking because the SDK allowed it. It uses a subset of the CANDIDE-3 model, (Jörgen

2001) a parameterized face mask (see Figure 3-3: Candide-3 Face Mask), with six action units

(i.e. facial expression markers) and eleven shape units (i.e. face shapes). These action units are

Upper Lip Raiser, Jaw Lowerer, Lip Stretcher, Brow Lowerer, Lip Corner Depressor, and Outer

www.manaraa.com

27

Brow Raiser. For each action unit a numerical value indicates the degree of presence of that

marker. In the research prototype, the Jaw Lowerer and the Outer Brow Raiser were used and

were deemed sufficient for the purpose. What has not been fully determined is how the threshold

for the value associated with the action units may differ from person to person.

Figure 3-3: Candide-3 Face Mask

Gesture-triggered control can also be accomplished with other libraries if certain facial

features (e.g. eyes, eyebrows and lips) are tracked in a sufficiently robust manner. For example,

faceAPI is able to do lip and eyebrow tracking but is only available in the commercial version. In

any case, this was only implemented as a proof-of-concept so its implementation in the other

libraries was not pursued.

3.2.2 Capture Technology

Various devices can provide the raw data for a face tracking user interface. While there

are potentially many such, only two classes of vision-based consumer devices are discussed

because they are non-intrusive, relatively cheap, and are readily available.

www.manaraa.com

28

3.2.2.1 2D Image Cameras

A regular camera is used to generate image data used in research and many vision-based

applications. In favor of this capture technology is its ability for high resolution capture and its

ubiquity, although this is not always taken advantage of because of the resulting increase in

computational complexity. Noise shows up in a number of different ways as discussed in Section

1.3.2.1 - Capture Technology.

3.2.2.2 Consumer Depth Sensors

It has been noted that consumer depth sensors such as the Kinect have recently gained

popularity and outcomes that have been accomplished or are being worked on are done with the

additional depth data available. Depth data generation is performed by parallel calculations of an

embedded system (“system on a chip”) from triangulation of structured IR light.(PrimeSense

2012) This technology is called Light Coding and was developed by PrimeSense Ltd. Depth

images are generated with a maximum resolution of 640x480. A number of different sensors use

this technology including the ASUS Xtion series sensors and the MS Kinect (Kinect for Xbox

and Kinect for Windows). The cost of these sensors ranges from 150 to 250 USD. In

comparison, a PMD Camcube 3.0, a 200x200-pixel 3D time-of-flight camera, was quoted at

6,490 EUR in August 2011. The Kinect sensor has a published range of 0.4-4m (depending on

near-mode feature available in Kinect for Windows) (MSDN 2012; PrimeSense 2012) and is

designed for capturing indoor scenes. Noise is exhibited as discussed in Section 1.3.2.1 - Capture

Technology.

The additional depth data can be very helpful in a face tracking user interface for a

number of reasons. Depth measurements are more accurate than any depth estimation method

from single monocular images. It also presents an advantage over depth reconstruction from

www.manaraa.com

29

stereo images because algorithms that would otherwise run on the software side for feature

identification, correspondence search, alignment, and others are off-loaded to the sensor. It is

also not vulnerable to similar textures that make correspondence search difficult in depth

reconstruction from stereo images. Segmentation of the foreground also becomes a simpler task

by disregarding regions beyond a certain threshold. Because depth calculation uses infrared light,

it is able to sense objects in low visible light conditions.

3.2.2.3 Sensor Fusion (Depth and Color)

While there are depth sensors belonging to the same category described in Section 3.2.2.2

- Consumer Depth Sensors (e.g. a certain model of the ASUS Xtion) that only provide depth

data, other sensors based on the same technology have RGB cameras that provide color images

that can be aligned with the depth data. Using these two data streams together help make up for

the weaknesses of the other and provide more information about the scene that can possibly aid

in the design and functionality of face tracking user interfaces. In addition, some sensors (e.g.

Kinect sensors) also have a microphone array that can perform beam forming (which

extrapolates the location of the speech source) that allows them to capture speech in good quality

in a possibly noisy environment. The use of sensors with audio capture capability provides

convenient hardware extensibility for speech recognition applications.

Various libraries can be used to capture and process data from these sensors. These

include OpenNI, the Point Cloud Library, and the Microsoft Kinect for Windows SDK. The MS

Face Tracking SDK uses both depth and color streams to track faces.(Smolyanskiy 2012)

www.manaraa.com

30

3.2.3 Feature Retrieval

As the core of this UI, this component is of utmost importance and requires a high degree

of robustness. Anything less robust than this can easily make the UI unusable. Feature

characteristics can be collected using various detection and other vision processing algorithms.

This is a widely researched topic in computer vision and this research does not attempt to give a

comprehensive discussion on it. It is mentioned here for completeness as well as to give a high-

level overview of considerations in the selection and use of such algorithms. The following

numbered sections will talk about three different computer vision objectives that are needed by

this user interface. Surveys on computer vision methods for the corresponding objective are

referenced and discussed and some opportunities for novel ideas are mentioned. Various open-

source and commercial libraries already have implementations of these objectives and some of

them are used in this research. (See Section 3.2.3.4 - Face Tracking Engines)

It should be kept in mind that this user interface operates in a constrained environment

where the background generally does not move, the imaging device is stationary, and the user is

the primary foreground object. Occlusions other than the possibility of glasses and natural

rotational movement will be uncommon and unexpected. Pre-processing methods like

background subtraction by image differencing or depth segmentation are definitely helpful. And

as a general note, algorithms should also process data with sub-pixel accuracy(e.g. using data

types that represent real numbers for point coordinates) whenever possible and appropriate.

Part of the challenge in the implementation is to keep coordinate spaces consistent. Three

things define a Euclidean coordinate space commonly used in 3D programming - direction,

origin, and units. Different face tracking engines may provide data in different coordinate spaces

and the ability to convert them to the needed space while minimizing loss of precision is

www.manaraa.com

31

necessary. As feature data is processed through the line, it may have to be converted into

different coordinate spaces. These coordinate spaces should be clearly defined at every point.

The discussion on the different face tracking engines evaluated is in Section 3.2.3.4 -

Face Tracking Engines. Because they may be mentioned in the following sections, it should be

noted that these options are 1) the MS Face Tracking SDK, 2) faceAPI, 3) discriminative random

regression forest (DRRF), and 4) the Haar cascade classifier. In addition, the discussion in the

following section is similar to my previously published work. (Villaroman and Rowe 2012, 57-

62)

Implementation - Numbers representing feature data use the float data type. This type

is given an alias that represents different units. (e.g. using #define to define ZeroToOne,

Meters, ScreenPixels, Degrees, etc.) Custom 2D and 3D structures (e.g. Point3D,

PointInBox2D, etc.) are implemented as templates so that the type aliases can be used for

readability (though they define the same type).

The different face tracking engines use the same input processor implemented as a shared

library. Because of this the input processor has to process data in the same coordinate space

conventions. The feature data coming from the face tracking engine is converted to a common

direction (left-hand rule). Once filtered, it is converted to numbers bounded by 0 and 1 where 0

represents the origin (at top left for the x and y dimensions), which is then further processed.

3.2.3.1 Detection

It is critical to determine which features to use as the primary controller of the user

interface. This depends on the quality and kind of data provided by the capture technology used

(see Section 3.2.2 - Capture Technology) and, obviously, the performance of the particular

www.manaraa.com

32

detection algorithm. The nose has been recommended as a good feature to track from regular

images because of its visibility and consistent intensity profile in various poses.(Gorodnichy

2002, 181-186) Regular images also provide characteristically high intensity gradients for the

eyes. However, in a noisy depth image, the eye on its own is harder to differentiate from another

relatively flat patch. In a depth image the nose is more prominent.

The feature or a combination of such features to be detected has to be unique in the image

and removal of non-relevant data (e.g. by segmentation) would be helpful in making this happen.

Using a combination of features can provide confidence levels that can be adjusted to reduce

false positives.(Villaroman and Rowe 2012, 57-62)

Using depth data can help simplify the detection problem by providing additional

recognizable data. For example, depth data can confirm whether the detected feature is on a head

or not, reducing false positives. The use of a combination of detection methods or data streams

can help make detection more robust.

The identification of good methods for face detection can be aided by reviewing some of

the latest surveys on it, which include works done by Zhang et al. (Zhang and Zhang 2010),

Yilmaz et al. (Yilmaz et al. 2006, 13), and Ming-Hsuan et al. (Ming-Hsuan et al. 2002, 34-58)

While the ability to detect per-frame shows the computational efficiency of an algorithm,

this typically introduces noise and ignores valuable a priori knowledge. Coupled with tracking,

detection does not have to be extremely fast particularly when performance is on the line. It is

very important that performance is maximized to minimize false positives and negatives. It is a

major failure if the system cannot detect the face when it is present. As a comparison, it is one

thing if a standard mouse does not work linearly as expected and quite another thing if the user

cannot hold the mouse at all.

www.manaraa.com

33

3.2.3.2 Tracking

If the detection happens fast enough, detection can be used to determine the state of the

feature at every cycle. Alternatively, tracking methods can be used that take advantage of a

priori and current information to get a better estimate of the real state of the feature. Tracking

stops unnecessary detection from being performed when the feature has already been detected

and it allows the detection algorithm to have space to focus on performance over speed.

Face movement is generally smooth and tracking can help model this more accurately.

Yilmaz et al. did a survey on tracking methods in 2006.(Yilmaz et al. 2006, 13) It divided object

tracking into point, kernel and silhouette tracking. The survey indicated that point tracking

methods find corresponding points in subsequent frames and would usually be appropriate for

tracking smaller objects. This may be appropriate if small features are tracked such as the eyes or

nose. Kernel tracking methods use the object's shape and appearance and a motion vector is

produced from parametric transformation of the object. This may be more appropriate for

tracking the head or face. Silhouette tracking can be useful for certain face gesture detection.

This survey referred to works that used regular 2D images. Some of them may be applicable to

3D point clouds. However, if depth images from consumer depth sensors are used, the noise in

the object boundaries will cause inaccuracy in the results so the use of such boundaries should be

avoided.

Weise et al. used the entire face excluding the jaw area for rigid tracking from depth

images using Iterative Closest Point (ICP).(Weise et al. 2011, 1-10) They have published a

program (currently in beta) called faceshift that allows users to model their faces with various

expressions in 3D. This model can then be used so that their face movement can animate an

avatar with realistic expressions. Use of this program shows the robustness of, among other

www.manaraa.com

34

things, ICP in fine tracking of faces. Interestingly, the same method is used in the MS Face

Tracking SDK.(Smolyanskiy 2012)

3.2.3.3 Head Pose Estimation

This section is based on my previously published work. (Villaroman and Rowe 2012, 57-

62) If face pose estimation is accurate enough, it can prove to be very useful in processing input.

Murphy-Chutorian and Trivedi presented an excellent comprehensive survey of such methods

with an annotated comparison of accuracy in 2009 with a separate evaluation for fine and coarse

estimation. (Murphy-Chutorian and Trivedi 2009, 607-626) Some of the fine estimation methods

in these works show promise. (Balasubramanian et al. 2007, 1-7; Wang and Sung 2007, 1864-

1874; Yun and Huang 2006, 6 pp.-8) However, as they noted, many of the works reviewed make

assumptions or use methods that make them less applicable in real-world and real-time

applications. These include limitation to a single rotational degree-of-freedom, the requirement

of manual intervention, the use of test data that is very similar to the training data, and the

requirement of specialized setups or non-consumer sensors, among others. They have identified

these assumptions and associated them whenever applicable with the reviewed methods. While

these methods had been or could be improved by more recent technology, techniques, or

datasets, the use of this survey is recommended in the selection of face pose estimation methods

particularly because of the comparison on accuracy.

Recent works on face pose estimation using depth information address some of these

limitations and, perhaps with some improvement or modification, are appropriate in real-world

face tracking user interfaces. (Fanelli et al. 2012; Kondori et al. 2011, 1-4; Weise et al. 2011, 1-

10)

www.manaraa.com

35

Tracking methods may also be applicable and useful here to capture smooth movement

and some pose estimation methods already use them.(Murphy-Chutorian and Trivedi 2009, 607-

626) A method worth noting for its potential to track face location and pose accurately using 3D

point clouds is Iterative Closest Point (ICP) as used by Weise et al. (Weise et al. 2011, 1-10) The

performance of their methods can be seen in the use of software based on their research called

faceshift.

Pose estimation will usually result in or can be derived to an Euler angle (the angular

orientation of a rigid body relative to a fixed 3D frame of reference). Yaw and pitch rotations are

the primary movements that will control the pointer. The roll rotation is not naturally a pointing

movement but may be used for special commands. While the face tracking engines evaluated are

not very explicit about how they perform pose estimation if they do, it is known that rotation can

be calculated when a model or face mask is known and it can be corresponded with the image

using POSIT (pose from orthography and scaling with iterations).(Dementhon and Davis 1995,

123-141; Prasad and Aravind 2010, 162-169)

3.2.3.4 Face Tracking Engines

Instead of implementing some of the techniques mentioned or an improvement of them,

which would extend work beyond the scope of this research, it was decided instead to use current

and state-of-the-art implementations of good or novel techniques. These different face tracking

libraries represent the different options evaluated for feature retrieval and are now discussed.

This discussion has been separated from the first three feature retrieval objectives to provide a

single discussion for each one because each is able to perform multiple objectives. The

comparison among the different face tracking engines are done with the same set of options

www.manaraa.com

36

which include tracking a 2D location instead of the other options that require a head pose, a

moving average filter, and a differential pointer.

Microsoft Face Tracking SDK - The Microsoft (MS) Face Tracking SDK is a closed

source but publicly available library that uses the MS Kinect for Windows SDK that captures

and processes data from an approved Kinect sensor. There are currently two such sensors - the

Kinect for Xbox and the Kinect for Windows, the former being the original game console device,

and the latter designed for use with a PC with additional capabilities such as near-mode vision.

Note that the prototypes made for this research used version 1.6 of the SDK.

Direct hints of the techniques used was given by one of the developers behind

it.(Smolyanskiy 2012) It uses active appearance models (Mingcai et al. 2010, 701-708) as the

core of its 2D tracker but they have extended it to use the available depth data for more robust

detection and tracking. It uses ICP as well for the likely purpose of tracking head movement. The

SDK provides the 3D location and the 3D orientation of the head. It also provides the 100 2D

features points and the 121 3D feature points of the tracked head. In addition, it also exposes a

CANDIDE-3 model (see Section 3.2.1.2 - Selection Control and Other Commands)

corresponding to the state of the tracked face.

In addition to the SDK, MS also provides a program called Kinect Studio which is able to

connect to the sensor data stream in an application that is using the Kinect for Windows SDK.

Among other things, this provides visualization of the various data streams and it provides

recording and playback functions of such streams. In this way, raw data can be standardized for

various purposes. For this research, it is used to provide the same raw data for evaluating and

comparing certain option. (see Section 4.3 - Filters) In addition, it can be used to standardize

www.manaraa.com

37

various behaviors such as making sure that interaction zones defined by orientation limits is the

same as interaction zones defined by location limits.

Figure 3-4: Face Detection and Tracking Using the MS Face Tracking SDK

Implementation - The detection happens automatically when StartTracking is

called on a class implementing the IFTFaceTracker COM interface. This class is created

using the factory method FTCreateFaceTracker.

If the tracking state is successful in the previous frame, calling ContinueTracking

tracks the current state of the face without performing detection on the entire data frame.

Otherwise, StartTracking should be called again and detection is performed. Detection and

tracking are implemented to run on a separate thread.

Using the Kinect for Windows sensor (as opposed to the Kinect for Xbox) allows the

SDK to detect and track faces that are closer to the sensor than usual (~0.4 - 0.8 m) with its near-

mode feature. The SDK has a skeleton tracking ability for upper bodies that helps with face

www.manaraa.com

38

tracking by giving it hints on where to start looking for the head. If no hints are given (it is a

parameter passed in ContinueTracking and StartTracking of IFTFaceTrackier),

tracking can fail in near-mode and it can be problematic. For this reason, skeleton tracking

should be turned on particularly when using near-mode.

The IFTResult COM interface contains the result of face tracking. The 100 tracked

points are obtained using IFTResult.Get2DShapePoints. These points are in pixel

coordinates. Obtaining relative distances in 2D space using pixels coordinates can be

problematic. For example, it is difficult to define an interaction zone that scales with the face

when the results obtained are in pixel units because the width of that zone may be 150 pixels in

one real world location and 100 pixels in another that is farther from the sensor. A work around

can be accomplished by using face feature distances (e.g. express the zone as a factor of the

distance between the eyes). Alternatively, the tracked points can be obtained with its 3D

representation in real-world units by using IFTModel.Get3DShape. This allows the SDK to

determine fixed-size real world regions that are sufficiently invariant to the user location (e.g. a

0.2m-wide 3D region will be still be ~0.2m wide whether the region is placed closer or farther

from the sensor). However obtaining this is not very straightforward, at least in the C++ API.

The Euler angle representing the head orientation can be obtained from a face tracking result

using the IFTResult.Get3DPose method. It gives this measure in degrees.

SeeingMachines faceAPI - faceAPI is a closed-source and commercially licensed library

for face tracking using regular PC cameras. The non-commercial version is able to provide the

location and the orientation of a head while the commercial version is able to provide more data

such as lip and eyebrow tracking. While no evidence can be found that hints what techniques it

employs, it was obviously one of the best choices for a face tracking engine even at first try.

www.manaraa.com

39

Detection is quick, tracking is smooth and is robust to scale, rotation, and partial occlusion.

Because various WDM (Windows Driver Model) cameras can be used with it, it takes into

account camera calibration data for more accurate tracking.

Part of the purpose of the evaluation of this library as a feature retrieval option is to

support the argument that raw depth data is not necessary for robust tracking. It is able to provide

good estimates of 3D head orientation and location from 2D video.

Figure 3-5: Face Detection and Tracking Using FaceAPI

Implementation - Detection starts at the beginning of a tracking sequence which is

initiated when smEngineStart is called. Worker threads are created internally in the engine

and call back functions are implemented and bound to those threads. These functions receive the

current feature vector. The feature vector includes the location of the head in world coordinates

(i.e. sensor is origin, units in meters) and the orientation in radians and is stored in a

smEngineHeadPoseData structure. The SDK provides very convenient conversion methods

www.manaraa.com

40

between points in the world, face (local object), and projective view coordinate spaces. One

example of the use of these conversion methods is the definition of the interaction zone by

distance limits. The limits can be defined in the face coordinate space (e.g. ±0.06m because the

origin is the center of the face). These points can then be converted to the world coordinate space

which can then be converted to 2D view coordinates if necessary.

Random Forest - This is the term used in this research for the work done by Fanelli et al

on using discriminative random regression forests (DRRF) for head detection and head pose

estimation from depth images.(Fanelli et al. 2011) It uses training data generated using a Kinect

sensor. Training was done on users from 1m away so that makes classification and regression

less robust at a closer or at a farther distance. The data set used had 24 sequences of 20 people. It

was annotated using an ICP-based tracker.(Besl and McKay 1992, 239-256) Detection is done at

every computation cycle so no independent tracking mechanism was implemented. The best

published results of this method indicate a yaw error of 8.9±13.0°.(Fanelli et al. 2012; Fanelli et

al. 2011)

Figure 3-6: Head Detection and Pose Estimation Using Random Forests (DRRF)

www.manaraa.com

41

Implementation - This algorithm returns the location of the head in real-world units

(mm) and the orientation in radians. Since the location of the head is closer to the surface

(though not necessarily on the surface and as opposed to being in the center where rotation does

not change it), it can be directly used as the tracked point for location based tracking. The stride

value, a trade-off setting for performance and speed, can be changed. It defaults to 5 but was set

to 10 (faster but a little less accurate) for the tests used here so that it has a frame rate that is

closer to the others. The program reads and loads the decision trees included with the program at

the beginning. In addition, this can detect multiple heads. For simplicity, the first head is tracked

for input.

Haar Cascade Classifier - The object detection framework of Viola and Jones (cascade

classification of Haar-like features using integral images) (Viola and Jones 2001, I-511-I-518

vol.1) was a landmark work that made face detection more practical in real-time applications for

its speed and effectiveness.(Zhang and Zhang 2010) Because of its popularity and availability, it

is evaluated in this study as it provides a baseline method for detection (though a number of

other common methods are also available). The implementation in OpenCV was used. Its use of

integral images makes feature calculation computationally efficient. Adaboost (adaptive

boosting), which combines weak classifiers to produce a more accurate one, was used for

training. Classification is done by going through nodes representing the weak classifiers

successively. Since detection happens at every computation cycle, there is also no independent

tracking mechanism for this option.

It is possible to add to this option the ability to estimate head pose. One such method that

is available in OpenCV is POSIT. This was not implemented at this time because only a baseline

method for detection and tracking is needed.

www.manaraa.com

42

Figure 3-7: Face Detection Using the Haar Cascade Classifier

Implementation - OpenCV has various pre-trained Haar classifiers in XML format that

represent corresponding training data for a particular feature (e.g. face, eyes, nose, etc.). The one

used for the research prototype is the dataset for faces contained in

haarcascade_frontalface_alt.xml. The implementation is straightforward. A

CascadeClassifier object is first loaded with the data in the said XML file using its load

method. The incoming video frame is pre-processed by converting it to gray scale and

performing histogram equalization on it. The CascadeClassifier.detectMultiScale

is then used to detect faces in the frame. The result is a vector of rectangles that would indicate

the location and the size of possibly multiple faces. The size of the expected face was set to

avoid false positives on smaller regions which have been observed. This can also detect multiple

faces. For simplicity, only the first detected face is tracked for input.

The face location is signified by the green dot.

www.manaraa.com

43

3.2.4 Feature Data Processing

Feature data retrieved from the face tracking engine may come in various forms and

conventions. Namely, their points and angles may go with their own coordinate spaces, origins,

and units. This data has to be transformed into another form that could then be used directly to

send input commands through the Windows API. This transformation includes filtering, scaling,

conversion into 2D coordinates, and converting to screen points. This section will primarily

discuss filtering as the other methods are straightforward enough that a discussion is

unwarranted. The conversion to screen points is discussed in Section 3.2.5 - Computer Input /

Pointer Behavior.

The collected feature data is expected to have some degree of noise. Without additional

processing, this may lead to the control of a pointer that jumps around and on and off the target

causing it to be less usable. A number of filters can be used to mitigate this noise. This is more

effectively and simply achieved if these filters are performed on the feature data points instead of

on the resulting pointer as previously suggested.(Villaroman and Rowe 2012, 57-62) This is so

because some combinations of options might use a combination of feature data points which

would merge the noise of the individual data points. In addition, the random noise that needs to

be filtered is primarily caused by every component discussed up to this point (Sections 3.2.1 -

3.2.3). The noise caused by scaling and other processing as discussed here is not random and is

not very significant.

A number of different methods can be used to do this. Among them are mean/median

filters, mean-shift,(Varona et al. 2008, 357-374) particle filters, and the Kalman filter. In this

study, as it is not a comprehensive study of every option, only two good candidates are evaluated

and implemented - the average filter and the Kalman filter.

www.manaraa.com

44

Before these options are discussed, note that in general, broad pointer movements do not

need to be filtered. It is when an object is pointed to that accuracy is more important. For this

reason, the filtering is only applied when the face is steady. This is different from previous work

where the filter was applied the entire time.(Villaroman and Rowe 2012, 57-62) One reason that

this option was pursued is that broad movements can affect the result of the filter adversely (e.g.

latency, boomerang effect for predictive filters, etc.)

Average Filter - Average filters are easy to implement and are relatively computationally

efficient. However, it takes into consideration the value of all data points regardless of outliers

caused by noise. Where there is a series of data provided by the face tracking engine this filter is

implemented as a moving average filter. A variation of this can be done by making it weighted,

with the most recent points having more influence on the estimated point.

Implementation - The different kinds of points in the prototypes (e.g. Point2D,

Point3D) implement the member-less Filterable interface. The MeanFilter

implements the IPointFilter interface. This filter contains instances of the

SimpleMovingAverage class which stores the values in the sample and calculates the

moving average.

The method for checking if the face is steady or not is the same here as in the

implementation of the Kalman filter. The current point and the point from ten cycles back are

compared, taking into account their limits (because different options will have different values

for limits). If the difference is greater than a certain threshold, the pointer is considered moving

and the filters are then disabled, cleared of past data, and set to a new beginning value. If the

pointer becomes steady, the filters are activated again.

www.manaraa.com

45

Kalman Filter - The Kalman filter is an appropriate method to use in this scenario,

contrary to a previous finding that "they do not achieve good results with erratic movements such

as head motion". (Varona et al. 2008, 357-374) Upon further analysis, that conclusion seems to

have come from misinterpreted use of the Kalman filter in an evaluation of tracking methods for

HCI where the Kalman filter was used to aid in tracking and not to make the pointer movement

smooth. (Fagiani et al. 2002, 121-126) The classic Kalman filter can operate on a simple time-

discrete linear model such as this one and is relatively resilient to outliers and Gaussian noise in

general because such noise is considered in the algorithm. As a recursive Bayesian method, it

provides an efficient way of estimating the true state of an object by recursively predicting the

next state and updating it with new observations if there are any. It asks for parameters for the

process model, control input (which is not necessarily applicable in this case), new

measurements or observations, and noise in the process and in the observations. (Villaroman and

Rowe 2012, 57-62)

Implementation - OpenCV has an implementation of the Kalman filter. A simple way of

using this filter to a stream point data include:

1. Letting the position and the velocity in both axes define the state.

2. Letting the transition matrix be an identity matrix to model a static

3. Using the new cursor points from the feature data as measurements

4. Putting appropriate noise model estimates by making sure that the real noise

distribution is not too far from Gaussian white noise assumed by the filter and using

the standard deviation obtained when no filters are used to model the noise

covariance matrices.

www.manaraa.com

46

3.2.5 Computer Input / Pointer Behavior

Computer input behavior determines how the pointer actually moves given the final

calculation of feature data. The three options investigated for pointer control are called location,

velocity, and differential pointers. The differential pointer is used where an interaction zone

cannot be defined directly because of lack of available data. Where it is present, it is considered

only as a convenience function useful in production software but is not within the scope of this

research so it was only implemented in conjunction with some other options. At this point,

previous processing components would have provided a pair of values that may be bounded.

(e.g. a 2D point with a horizontal and vertical float range of 0-1.0 if bounded)

Determining pointer movement by 1) velocity - calculating the pointer jump from the
point with respect to the interaction zone , 2) differential - calculating the pointer jump
from the difference between the new and the previous interaction point, and 3) location -
calculating the new location from the point with respect to the interaction zone.

Figure 3-8: Pointer Movement Options

www.manaraa.com

47

Location - The pair of values can determine the actual location of the point on the screen

in a straightforward manner by scaling the bounded values to the size of the screen. This option

affects accuracy according to the resolution of the screen because of this scaling.

Velocity - With this option, the pair of values will be checked if it is within a certain

threshold (i.e. the head is facing generally directly forward). If it is within this threshold, the

pointer does not move. After the threshold line, the velocity scales non-linearly from 0 to a pre-

determined maximum velocity. This scale is quadratic to allow for finer control while still giving

the ability to go as fast as the pre-determined rate. This option allows the head to operate like a

joystick and requires less accuracy than the first. Previous works have implemented and

recommended this option because of this less stringent accuracy requirement.(Gorodnichy and

Roth 2004, 931-942; Varona et al. 2008, 357-374) This joystick-like movement may not be very

ideal to users because of the additional movement required to center the face to stop the pointer

(as opposed to an actual joystick that centers automatically on its own). Improvements in

technology and computer vision techniques allow us to consider and use the first, which can

prove to be more usable, as a viable option.

Differential - This option does not require an interaction zone and must be used if the

user input style does not provide it in order to follow the design requirement of robustness to

user location. Instead of comparing the point to its container, it is compared to the previous

point. This difference is then used to calculate how much the pointer will jump. This is

comparable to how standard physical mice work. The HeadMouse Extreme, as a PUI-based

hardware mouse uses this.

In other input styles, using this option provides a way of calibrating the exact location of

the pointer relative to the head pose. For example, the input processor has to know the position

www.manaraa.com

48

and angle of the sensor in order to properly calculate the head pose and location. When

differential is used, the user can easily calibrate the pointer location with robustness to

reasonable variance in the sensor position and angle.

Implementation - All the abilities in this component are contained in the

PointerBehavior class. The implementation for both the location and velocity options is

straightforward. The 2D pair (representing location or rotation) is a vector of floats bounded by 0

and 1. For the velocity option, the interaction point that is bounded by 0 and 1 is shifted to where

the origin is placed at the center to make the code that calculates how far the head gaze is from

the center position more intuitive. The velocityStillRadius (ranges from 0-0.5) defines

the central region within which the pointer should not be made to move is an adjustable

parameter.

With the differential pointer, since there is no interaction zone defined, the interaction

point is not scaled to a region bound by 0 and 1 to avoid rounding and arithmetic errors. The

previous point is stored in the UserInput class. The face tracking engine should determine the

amount the pointer will jump based on the feature data it makes available (e.g. real-world units,

or camera pixels).

3.2.6 Summary of Input Components

The different components in this section (Section 3.2 - Input Components) and the

options studied in each are summarized in the following table.

www.manaraa.com

49

Table 3-1: List of Options and Possible Combinations

Name
Relevant
Features

Interaction Zone

M
S F

ac
e T

ra
ck

in
g

Fa
ce

AP
I

Ra
nd

om
 Fo

re
st

Ha
ar

 C
as

ca
de

No
ne

Av
er

ag
e

Ka
lm

an

Lo
ca

tio
n

Ve
lo

cit
y

Di
ffe

re
nt

ial

Point from
2D rotation

2D head
orientation

Moves based on
location. Defined
by rotation l imits .

o o o x o o o o o o

Point from
2D location

2D point
Fixed. Can move by
us ing Di fferentia l

pointer.
o o o o o o o o x o

3D Pose
Pointing

2D orientation
and 3D location

not practica l ly
appl icable o o o x o o o o o o

o - possible x - not possible

USER INPUT FACE TRACKING FILTERS POINTER
(Capture Technology/

Feature Retrieval)
(Feature Data

Processing)
(Computer

Input)

There are three (3) investigated options for User Input, four (4) for Face Tracking (which

combines options for feature retrieval and capture technology), three (3) for filters, and three (3)

for computer input.

3.3 Software Design

I designed the prototype to be able to accomplish its purpose while at the same time

allowing easy switching among the different options discussed in Section 3.2 - Input

Components. A simplified block diagram of the design follows.

www.manaraa.com

50

Figure 3-9: Face Tracking User Interface Application Diagram

The applicable input components are written as separate classes - UserInput,

FeatureFilter, and PointerBehavior. One main application class (Input) contains an

instance of each of these classes. This application is compiled as a shared library. Different face

tracking engines are set up as separate projects and they call methods from the Input

application class. These projects contain an adapter/helper class that, among other things,

initializes the Input application class with the specified options and makes sure that data is

entered in the appropriate format and conventions. While several other classes are contained in

the main application class, another such class is OSControls which sends the commands to

the Windows API for input simulation.

The process of getting the final pointer location from the face tracking data is illustrated

in the following UML (Unified Modeling Language) sequence diagram.

www.manaraa.com

51

Figure 3-10: Input Data Process (UML Sequence Diagram)

The software design of this prototype is especially suited for the purpose of being able to

use and evaluate the different options enumerated in this research. A user-ready product may

necessitate a design different from this one.

3.4 Evaluation

I designed and implemented various tests that enable a quantitative comparison of the

performance of the different options when used in a face tracking user interface. These

evaluation methods are discussed in the following numbered sections. A full usability test is not

within the scope of this research and is deferred to future work. The quantitative results should

give an indication of good candidates to use for usability tests. Some of the tests measure the

speed of usage which is usually a good indication of usability.

www.manaraa.com

52

All the tests are implemented as web pages. This allows the tests to be independent to the

implementation of the prototypes. This also allows comparison with other solutions that control

the pointer because it can be run on any computer with a compliant HTML browser. It is also

ideal to have the same user perform all the tests. This removes the most significant factors on

user preference and abilities and allows the evaluation of the user interface itself.

The different options also affect the user experience in terms of convenience of usage and

setup. These effects were observed and qualitatively discussed.

3.4.1 Point Spread of Stationary Head

One of the tests measures the spread of the generated pointer points of a stationary head

over a period of 5 s. This is designed to measure noise and would result in standard deviation

values for the horizontal and vertical axes. Setting a time period and an independent data

collection cycle length allows for a degree of robustness to possibly differing calculation cycle

lengths between implementations (e.g. the length of time required to generate the next point).

With a continuous visual feedback mechanism (i.e. the visible pointer), it is not very

crucial to have a specific pose for a particular target pixel. This means that if a particular pose

does not make the pointer go to the theoretical position (if one is known or expected), the user

can just initiate additional movement to move it to where he or she wants it to go. But as

supplemental data, with this test the offset from the target was also calculated.

www.manaraa.com

53

Figure 3-11: Pointer Spread Test

Implementation - Using Javascript, the pixel location of the pointer was calculated

every 50ms. The test is initiated by a click once the user feels that the pointer is as close to the

target as he can make it. The tester will then be still for the next 5 s after which the page will

signal the end of the test and the results, containing the standard deviation values and the offset

point (calculated from the mean). The raw data vector is also displayed for further analysis.

3.4.2 Speed Pointing

Minimized spread is not enough to evaluate this user interface. The way the pointer

follows face movement may be different depending on the implementation. For example,

depending on the way filters (see Section 3.2.4 - Feature Data Processing) are implemented, the

pointer may exhibit some latency and inertial movement. This would affect the ability to point.

For this reason, another test was designed to measure the accuracy of pointing to a target. This is

done by measuring the speed at which several points are pointed to and selected. There are nine

www.manaraa.com

54

points placed around and on the center of the screen. Having points in different places would

include performance in pointing at locations on the edges of the screen (which potentially can be

less accurate than those on the center). The result of this test is a time value.

In the tests done for this research, selection or clicking is initiated using another input

device such as a stationary mouse. While it is possible to use dwell or face expressions to initiate

it, they were excluded to remove their influence on the result and focus on pointing abilities. It is

possible that in trying to click at the target, the user might miss and click outside the target

button. The tester is instructed to click when a reasonable aim is made and try to select it as

opposed to clicking consecutively and indiscriminately in order to ensuring selection of

everything on the path of the pointer.

Figure 3-12: Speed Pointer Test

www.manaraa.com

55

Implementation - The targets are implemented as clickable div’s. DOM and CSS

manipulation is done with the help of jQuery. These targets space themselves automatically and

use the borders of the browser window. Ideally the test should be conducted with the page at full

screen. At the beginning of the test, the targets’ size in pixels can be defined. This allows setting

the difficulty of the tests. And for simplicity, it is up to the user to make sure that all numbers are

selected. Timing starts when the test begins when the designated button is clicked. Timing ends

when the last button is clicked. Javascript’s Date().getTime() is used which gives

millisecond precision.

3.4.3 Speed Typing

Sometimes, missed clicks caused by the challenge to point accurately result in actions

that have to be reversed (e.g. the wrong link is selected in an Internet browser). To provide a

measurement for the adverse effects of missed clicks, a speed typing test was designed and

implemented. In addition, this test will provide comparison among user interfaces that use

different modalities (e.g. speech recognition, mouth sticks, etc).

This test presents very common words to be typed using a pointer on an on-screen

keyboard. The word list was taken from the top twenty-five most common function words and

the top twenty-five most common content words that are nouns in the Oxford English Corpus for

a total of fifty words. (Oxford Dictionaries) Since the function words tend to be shorter than the

content words, they were placed alternately with the content words. Error correction in this test is

forced, which imposes a 100% accuracy rate. This means that every word has to be typed

correctly for the test to continue. This accuracy requirement places a time penalty on a missed

click because incorrect letters need to be deleted. The test ends when all the words are typed and

a minute has not passed or when a minute has passed and the current word is spelled correctly.

www.manaraa.com

56

A fixed-sized frame (800 x 300 px) is provided as a place holder for the on-screen

keyboard. This allows consistency in the size of the keyboard (note that the Windows OSK is

resizable) and consequently, in the size of its keys. This makes sure that the size of the keys does

not favor one user interface configuration over another. The results are given in characters and

words per minute (CPM and WPM). CPM is counted because that measure is invariant to the

lengths of the word which, when only a few words are typed, may skew the results. As a final

note, no text prediction tool was used (not even the built-in text predictor in the Windows OSK)

because key selection is what is being evaluated, not the speed of text entry. Figure 3-12 shows

screenshots of the speed typing test before and during a test.

Figure 3-13: Speed Typing Test - Before Start

www.manaraa.com

57

Figure 3-14: Speed Typing Test - Test Ongoing

Implementation - jQuery is used for, among other things, its selector capabilities for

CSS styling. This makes it easy to implement the formatting for the dynamic status of the words

(e.g. correctly spelled, current word, misspelled, etc.) A key event (keydown and keypress)

handler is attached to the text field to check the status of the current word being typed. The

various objects in this client-side application (e.g. typingTest, currentWord, and

testScore) are implemented with a modular design pattern that allows these objects to have

what are effectively private and public methods.

www.manaraa.com

58

4 RESULTS AND ANALYSIS

All the options discussed in Section 3.2 - Input Components were implemented. To

simplify the evaluation, the different options in a single input component were compared to each

other holding all other options constant as much as it is possible instead of testing all 108

combinations, which does not include parameterized options (see Table 3-1: List of Options and

Possible Combinations). In addition to quantitative results, some usability considerations are

discussed. While only one user was involved in the tests performed, it is sufficient for the

purpose as it reduces discrepancies caused by varying human factors. This user was given the

opportunity to practice with the different interfaces until he feels he has learned how to use it.

For this reason, data from these practice rounds was not collected. Results of this test could be

used to direct a full scale usability test of an implementation with some of the best options. After

this comparison, an analysis of combined options that could make up a robust implementation is

also presented.

Note that in all of the tests conducted, selection or "clicks" were performed by manually

clicking a switch (in this case, a stationary mouse). While triggering selection by face gestures

(see Section 3.2.1.2 - Selection Control and Other Commands) was implemented for

completeness, it was not used in the evaluation because only one of the four face tracking

engines used can support it without additional development and/or license fees.

www.manaraa.com

59

4.1 User Input

There were three options tested for user input styles. They are:

• Point from 2D rotation

• Point from 2D location

• Head pose pointing

The other options were the same in all three conditions (except where specified): namely,

MS Face Tracking was used for feature retrieval, simple moving average filter for feature

processing, and location for pointer behavior. Note that the filter here was applied uniformly to

all interaction points. In later tests, filter processing was modified to work only when the user is

within a steadiness threshold.

Because this option directly affects the control of the pointer, the speed pointing test (see

Section 3.4.2 - Speed Pointing) was used to evaluate it. For each option, the test was performed

10 times. To provide a comparable baseline, the test was also done using a standard mouse.

Table 4-1: User Input Speed Pointing Results

(sec) From 2D
Location

From 2D
Rotation

Head Pose
Pointing

Standard
Mouse

Average 33.9 43.1 57.8 7.3
Std Dev 3.5 4.7 7.4 0.3

Min 27.4 35.5 47.2 6.9
Max 39.6 49.4 66.7 7.8

Notes:
Used MS Face Tracking, average filter, and location pointer
From a sequence of 10 tests per option

Holding all other options and configuration equal and with the same input movement for

all three, shorter speeds imply better usability. Longer speeds imply difficulty in pointing at a

www.manaraa.com

60

button and holding still long enough for a click to be completed. Note that missed clicks

occurred (though not deliberately as with indiscriminate clicking) but are not considered in this

particular test.

From these results, it is clear that using the location of a tracked 2D point ("Point from

2D Location") is the fastest of all three options, although still much slower than the standard

mouse. But there is a caveat when it comes to its usability that is a consequence of its

implementation. It sets the interaction zone at the beginning of a tracking sequence which then

sets the pointer at the center in that frame. If a break happens in the sequence (e.g. tracking fails

and the face tracking engine has to restart detection and tracking), or more specifically, if

tracking starts while the user's face is in a rotated position, the same position will translate to a

pointer being in the center which can be slightly or extremely inaccurate. In this case, tracking

may have to be re-initiated by the user. The root cause of this problem is in the face tracking

engine which may have varying levels of robustness. It would be ideal if tracking never fails but

as it does sometimes, this can be overcome by using a differential pointer (see Section 3.2.5 -

Computer Input / Pointer Behavior) or by starting the tracking only when the head is in a neutral

position, which can be tricky depending on the data made available by the face tracking engine.

4.2 Face Tracking Engine

Four different face tracking libraries were used in the implementation. They are:

• MS Face Tracking SDK

• SeeingMachine's faceAPI

• Random forest (by Fanelli et al.)

• Haar Cascade Classifier (OpenCV implementation)

www.manaraa.com

61

The tests for this option include the speed pointing and the measurement of the spread of

the generated points of a stationary head (standard deviation). The test pages are implemented

externally so there is a common and unbiased test for the different options and their

implementation. In this test, point from 2D location was used for user input and location pointer

was used for pointer behavior because they are common to all options. In addition, no filtering

was applied to show how much noise the face tracking engine itself produces. The computation

speeds of each engine were also recorded together with the CPU load. Each of them uses a

different visualization tool. It is possible that the visualization of one engine is more intensive

than that of the other. No attempts were made to estimate how much computational load

visualization causes but this load can be eliminated from user-ready systems because a full

resolution visualization of the data stream are not necessary in such

The following table summarizes the results obtained.

Table 4-2: Comparison of Face Tracking Engines

 MS Face
Tracking

faceAPI Random
Forest

Haar
Cascade

Speed Pointing (s) 22.0 22.3 105.0 >120.0*
Spread - Std Dev (x|y) 10.6 | 9.0 12.7 | 6.3 29.9 | 34.2 77.1 | 40.6
Speed (fps) 24 30 9 16
CPU - Tracking 22% 14% 25% 21%
CPU - Not Tracking 22% 2% 25% 19%
Memory Usage 134MB 99MB 127MB 23MB
Notes:
All implementations (except Random Forest) have a sleep/wait time of 32ms in their main loop.
CPU load is a visually-estimated average from CPU performance counters of MS Windows.
"Point from 2D location", no filters, and location pointer were used.
The standard deviation is an average of the standard deviations of 5 sequences with 100 samples
each (5s).
In the Random Forest option, a stride value of 10 was used.
*The subject was unable to complete the speed pointing test

www.manaraa.com

62

The results show a number of interesting things. MS Face Tracking and faceAPI seem to

be similar when it comes to being able to point using location of tracked points. Random Forest

and the Haar Cascade are too noisy to be usable. With Random Forest on the speed pointing,

indiscriminate clicking helped in completing the task, but in no way can it be considered usable.

With Haar Cascade, the task was not completed. Their respective spreads (77.1 and 40.6) show

why that is the case.

Their speeds also show which ones are more practical for use. Random Forest maximizes

utilization of one of the cores of the quad-core CPU (25% for the entire system) which indicate

multi-threaded programming could still improve it but its performance indicate that it needs to

improve significantly to be a good consideration for a face tracking user interface. When it

comes to speed, faceAPI shows impressive advantage with its lower computational requirement,

thereby reaching speeds at the sensor's frame rate. Lower CPU utilization makes this more

energy efficient for long-term use.

It is interesting to note the difference in the spread between values in the horizontal (x)

and vertical (y) axes. There are several factors that would cause this and much of it is in the

implementation of the face tracking engine (e.g. low level of detail in the training data,

estimating pose from 2D, etc.). But part of it is also comes from the aspect ratio of the interaction

zone (5:4) which was set from the user's level of comfort. This ultimately has to be scaled

disproportionately to 16:9 which is the aspect ratio of the screen resolution used for testing.

In the entire development and testing process, observations were made of the

performance of the face tracking engine that at this point is more effectively described than

quantitatively measured. They are now discussed in turn.

www.manaraa.com

63

MS Face Tracking works very well in certain conditions but not in some. For one,

detection does not work very well when thick glasses are used or when the user has a long, thick

beard.(Smolyanskiy 2012) Using the Kinect for Windows sensor (as opposed to the Kinect for

Xbox) allows the SDK to detect and track faces that are closer to the sensor than usual (as close

as 0.4m) with its near-mode feature. Detection works better when more of the upper skeleton is

visible. The skeleton tracking tells the algorithm where to look for the head in the next frame.

Without this, continuous detection (as opposed to first time detection) fails. Detection is more

robust farther from the sensor, which reduces usability. Tracking is fairly robust to scale and

rotation but every now and then a break in the tracking will occur which can be a problem for the

user input option "Point from 2D Location" (see Section 4.1 - User Input). The implementation

of the options used should be able to recover from such breaks. Overall, this is a good library to

use for this user interface but it restricts usage to the Kinect sensor and to the MS platform.

With faceAPI, initial detection requires the user to be within 0.75m of the camera.

Detection is robust and there is no noticeable delay. This is another point that gives this

advantage over MS Face Tracking. When it comes to detection and tracking, this remains to be a

very robust solution. This technology proves that depth is not necessary to have a robust face

tracker. In addition, this and the Face tracking SDK are able to detect and track under low light

conditions where the primary source of light is the computer monitor. In this lighting scenario,

the depth sensor's advantage in seeing in low light conditions is reduced. Unlike the MS Face

Tracking SDK, this uses a regular PC camera so hardware costs are minimal. The biggest

challenge in its use and deployment is its license restriction.

With MS Face Tracking and faceAPI both being good candidates, the following

additional comparison was made for the two. The results that have just been presented did not

www.manaraa.com

64

test their ability to detect head pose (because the option used the 2D location of a tracked point).

The following shows speed pointing tests done where the 2D rotation of the head is used as user

input.

Table 4-3: Comparison of Head Pose Estimation of MSFT and FaceAPI

Speed Pointing MSFT faceAPI
Average (s) 43.1 66.0

Std Dev 4.7 15.9
Min 35.5 45.6
Max 49.4 90.4

Notes:
Used average filter, location pointer, and point from 2D rotation

Though point from 2D rotation is not the best option as the results show (see Section 4.1 -

User Input), this comparison shows that the head pose estimation of MS Face Tracking (yaw and

pitch, at least) is better than that of faceAPI.

The research of Fanelli et al on random decision forests for head detection and pose

estimation from depth using consumer depth images has a published implementation which was

used for this prototype.(Fanelli et al. 2011) Because the classifier has been trained on depth

images of users from 1m away, classification suffers significantly if the user is not located in the

same vicinity. Even with the background segmented out, the presence of other depth patches

(e.g. other body parts such as arms and shoulders) could produce false positives and lengthens

the computation cycle that is already long (though some parameters can be tweaked for this). The

noise, false positives, distance requirement, and long and intensive computation all make this

unusable in a face tracking user interface. A stride value can be adjusted that represents the

trade-off between accuracy and speed. It has been observed that a more accurate stride level only

www.manaraa.com

65

increases the computation time without significant improvements in accuracy. It has to be noted

that compared to other methods, this particular technique has only been recently developed and

could still be significantly improved by further research. The same technique has also been

recently incorporated into PCL but that particular implementation has not been evaluated for this

research.(Aldoma 2012)

In the Haar cascade classifier, tracking is accomplished by successive detection on a per-

frame basis, which on its own is quite remarkable. False positives have been observed even in

the constrained single user scenario with a flat background although it was uncommon and can

be reduced by changing some parameters. Face sizes can vary per frame but for this purpose, it is

not needed (though it is used to increase the confidence that the detected head is really the user's

head). It is also less robust to face rotation compared to the others so the interaction zone had to

be set smaller than the normal. All of these make it insufficient on its own to enable a face

tracking user interface.(Villaroman and Rowe 2012, 57-62)

4.3 Filters

The following filters were evaluated:

• Average

• Kalman

• None used

The purpose of using filters is to help the user control the pointer more accurately. To

evaluate these options, two things were looked into - 1) how does it minimize the noise when

pointing at a target and 2) how does it affect the actual pointing movement. It is possible to

configure the filter in such a way that it minimizes noise to the detriment of usability. For

example, increasing the sample size of a moving average filter may result in a minimal noise but

www.manaraa.com

66

it may make the pointer move with significant latency. For this reason, the filtering was only

applied when the face is within a steadiness threshold.

To answer these questions, the point spread test and the speed pointing tests were used.

MS face tracking, "Point from 2D Location", and a location pointer were the common options.

Figure 4-1 shows a histogram of the generated points (using the point spread test) comparing the

different filter options. Table 4-4 shows a summary of the results of both the point spread test

and the speed pointing test.

Figure 4-1: Comparison of Filter Performance from a Sample of Generated Points

Table 4-4: Comparison of Feature Filters

 None Average Kalman
Point spread (x|y) 10.6 | 8.9 7.9 | 3.4 3.5 | 4.5
Speed pointing (s) 22.0 33.9 22.1
Notes:
Used MS Face Tracking, point from 2D location, and location pointer
Point spread is the average of the standard deviations of five test sequences
Speed pointing is the result of 10 test sequences

www.manaraa.com

67

Some of the results here were unexpected. It may be intuitive to assume that applying

filters would make effective use easy. While the point spread did decrease from having none to

using average and from then to using the Kalman filter signifying less noise, the speed pointing

test results show that it wasn't necessarily better. In fact the average filter performed poorly when

it comes to effective use. Just as discussed earlier, smoothing has unintended adverse

consequences. It makes the pointer move with sufficient latency that the user would find himself

trying to click while crossing the mark which he might then miss because of the size of the

button and the speed of the momentum of the pointer. At the same time, while having no filter

seemed like it worked effectively, which it did, the problem with it is not very evident here.

Because the pointer will jump around in the area, targeting smaller objects becomes more of a

challenge. It just so happened that the 50-pixel buttons on the test was big enough that the

random pointing was likely to hit the button. When the Kalman filter was first used, while it did

solve the lag problem, it proved to be less usable than expected because, as a predicting

algorithm, it causes an inertial effect, where the pointer can go beyond the desired point based on

the previous direction. It also causes a "boomerang" effect as the pointer goes back to the desired

point. These inertial effects were very evident with broad face movements.

To solve this problem, the filter was implemented to work only when helpful. The

movement of pointing to a screen target can be divided into two phases - the relocation phase,

where the pointer is moved to the general area of the target and which is usually done with broad

swift movements, and the targeting phase, where the pointer is moved to the actual target and

which is usually done in a slower manner. The solution used to solve this problem is to apply the

filter only in the targeting phase but not in the relocation phase. This has improved the

performance of this filter to figures presented (see Table 4-4: Comparison of Feature Filters).

www.manaraa.com

68

4.4 Computer Input/Pointer Behavior

The three options evaluated were:

• Location - point location is controlled and is determined by scaled bounded

interaction point

• Velocity - point velocity is controlled and is operated like a joystick

• Differential - point jump is controlled by the difference of previous and current

interaction point and is operated like a mouse that cannot be lifted.

While the differential pointer is mentioned here, its performance is the same as the

location pointer because the math behind both is the same. If there is any difference between the

two it is artificial and it will come from the difference in the sizes of the interaction zone which

is inherently challenging to make the same (one is from the change in a face movement and the

other from the limit of the face movement). The differential pointer just has the advantage of

convenient self-calibration of the pointer offset and provides some robustness to variance in

sensor's location and orientation. Because the performance of the differential and the location

pointer is the same, only the location and the velocity pointers are compared in this section. The

speed pointing test is used.

Table 4-5: Comparison of Pointer Behavior Options

Speed Pointing Location Velocity
Average (s) 29.03 49.38

Std Dev 2.88 6.10
Min 23.43 37.54
Max 32.73 59.70

Notes:
Used faceAPI, average filter, and point from 2D location
The still radius for velocity (where the pointer will not move)

is 30% of the interaction zone and the maximum
pixel change is 15 per computation cycle.

www.manaraa.com

69

This shows that from the same interaction point space, setting the pointer by location is

faster than when setting the velocity is used. The face movement of the former is more natural

while that of the latter is more erratic because the face has to go back to neutral position to stop.

While it helped that the velocity changes in a non-linear way, it still made it challenging to make

fine adjustments to the pointer. While one can get used to its settings over time as evidenced by

worse results in the very beginning, the location pointer still triumphs when it comes to naturally

learning the interaction style.

4.5 Summary of Results

In Section 1.5 - Research Hypotheses, a list of hypotheses was presented. The following

summarizes the results of the experiments done with them.

www.manaraa.com

70

Table 4-6: Results by Hypotheses

 Hypotheses Result

1a State-of-the-art pose estimation makes pointing more accurate False

1b State-of-the-art pose estimation is sufficient for head pose pointing
(user input option) False

2a Depth data makes detection and tracking of face features more robust True

2b Depth data is necessary to make detection and tracking of face
features more robust False

3 Tracking is better than rapid detection True

4 Current face tracking tech is able to support a robust face tracking UI Sometimes

5 The Kalman filter deals with noise better than an average filter True

6 Pointing operation is easier when noise is minimized Sometimes

7 A Location/differential pointer is easier to use than a velocity one True

8 A differential pointer reduces the data requirements on the face
tracking engine True

9 External pointing tests can be used to compare performance True

10 Pointing accuracy can be measured by the stationary point spread True

In addition, the following summarizes some of the more significant discoveries and

contributions of this research when it comes to the design and implementation of face tracking

user interfaces.

This research provides a logical framework for the design, implementation, and

evaluation of face tracking user interfaces. Previous work only focused on one or two

components, and implemented a reasonable option from the other components to complete it.

www.manaraa.com

71

This research lays out a more complete picture of all the different components of this kind of

user interface so future work can use it to focus on a component in the appropriate context.

The interaction point should come from the space that has more detail and larger span.

This was evident in the increased effectiveness of tracking a point from 2D location over doing

so from 2D rotation. As far as the face tracking engines reviewed here have implemented head

pose estimation, there is less noise and more detail in the camera pixel space than in orientation

estimates. The reviewed state-of-the-art techniques on head pose estimation did not prove to be

necessary or very helpful in coming up with the most robust solution from the options. The span

of possible values with which to interpret input is defined by setting interaction zones which is

determined by the comfortable physical limits of the user and is implemented virtually.

Depth data is not necessary in making tracking sufficiently robust for a face tracking user

interface, though it may help improve the performance in some known and novel techniques.

faceAPI has shown this in that even though it does not empirically measure depth data, it still

performed as well or better than some options that do. faceAPI has been verified to be a high

standard for face tracking. Though MS Face Tracking was shown to be better than faceAPI with

pose estimation due to the availability of real depth, they are on the same level in their ability to

track face location even while one uses depth and other does not. Depth measurements from

consumer devices such as the Kinect are noisy and have to be processed further and in novel

ways to be able to track fine face movement. However, using the color image and depth image

together can make face tracking more robust as shown by MS Face Tracking.

From capturing raw data at the beginning to the final cursor location at the end of the

input process, the coordinate spaces of the 2D/3D data have to be clearly defined. In this

www.manaraa.com

72

research, an understanding and application of this concept allowed different face tracking

engines to be used with a common input processing library and to be switched easily.

It was shown that filters can have both positive and negative effects on the usability of a

face tracking user interface. There can be a trade-off between a filter's ability to reduce noise and

its effect on usability. While an appropriately configured Kalman filter (or other filters) can

reduce noise effectively, the goal of being able to aim accurately should be kept in mind. The

filters have to be implemented in such a way as to avoid pointing problems as a direct result of

the filter. Some of these filter-induced problems include lag and inertia. These problems were

addressed here in what is believed to be a novel way by using a filter and implementing it in such

a way that it adapts to new data points quickly and is only applied when the user is in targeting

mode (as opposed to broad movements of the face to move the pointer to a general area).

Controlling the velocity of a pointer was shown to be less effective or slower than

controlling the actual location. In addition, using the face like a joystick involves more

movement which can be felt as unnatural. The differential pointer is a different implementation

approach to setting the interaction zone and calibration. This solves practical problems such as

incorrect settings and calibration that can be caused by, among other things, the sensor's location

and orientation and the accuracy of the coordinate spaces of the face tracking engine.

From the tests performed, the following combination, hereafter called "faceUI", produced

the best result.

www.manaraa.com

73

Table 4-7: Best Possible Combination from Results

INPUT COMPONENT OPTION
User Input Point from 2D Location
Face Tracking Engine faceAPI
Feature Filter Kalman Filter
Pointer Behavior Location/Differential

Pointer

Some of the latest existing face-tracking user interfaces were compared with faceUI.

Using these other solutions, the speed pointing and the point spread tests were performed. The

following table summarizes the results obtained.

Table 4-8: Comparison with Existing Solutions

Test faceUI Head
Mouse

Smart
Nav

Camera
Mouse

Standard
Mouse

Speed
Pointing

(s)

Avg 19.2 14.9 18.3 20.8 8.1
σ 1.8 1.2 1.0 1.5 0.7

Min 16.8 13.5 16.8 18.2 7.4
Max 22.7 17.0 19.9 22.6 9.7

Spread, σ (x|y) 3.2 | 3.1 1.6 | 1.2 2.8 | 1.9 6.7 | 3.0 0.0 | 0.0
Speed
Typing

cpm 39.6 53.4 52.1 25.8 98
wpm 9.6 13.2 12.8 6.0 23.4

This shows that faceUI is comparable with the other solutions in performance though

certainly not the best. This shows great potential in this particular combination but with

additional usability benefits as defined in Section 1.2 - Proposed User Interface. However, the

biggest disadvantage of this combination is the proprietary nature and commercial licensing

attached to faceAPI. The HeadMouse Extreme, thought by the staff of the Utah Center for

Assistive Technology as the best option available in terms of performance, value, and ease of

www.manaraa.com

74

installation and use, remains as the best performing solution among those that were evaluated in

this thesis (next to the standard mouse).

Because the same tests were used, these different user interface solutions can be

compared with confidence that the results are indicative of performance. Part of the reason the

speed typing test was created and used is to allow comparison with other solutions that may use

different modalities. But there are some caveats in that the experimental setup may be different.

For example, Dasher, a predictive text entry tool evaluated with an eye gaze tracking system was

able to produce typing results ranging from 2.5-17.3 wpm (range from first to tenth sessions).

(Tuisku et al. 2008, 19-26) While the higher of these results outperform many of the leading

solutions evaluated in my research when it comes to nominal wpm, the results are not strictly

comparable because it uses word prediction while the speed typing test that I conducted was

designed not to use any prediction (because it is the key press accuracy that is being measured).

The same thing can be said of text entry speed ranging from 7.6 wpm to 86.9 wpm in a survey

that gathered results from experiments that used different text entry methods, keyboard

configurations, and error correction conditions. (Arif and Stuerzlinger 2009, 100-105) But there

is still value in knowing the typical typing speeds from these face tracking user interfaces

because they are, after all, actual typing speeds. Where speech recognition is an available

modality, it can yield significantly higher typing speeds (e.g. 160 wpm) and may be best for text

entry. (M2PressWIRE 2008)

Finally, a significant result of this research is that tests were designed and implemented to

measure the performance of the differently configured face tracking user interfaces. They

provided a standard of measurement for this research and are proposed to be a standard for other

input systems that rely on simulating pointer control.

www.manaraa.com

75

5 CONCLUSION AND FUTURE WORK

Face tracking user interfaces can provide significant benefit for users with certain

disabilities or who otherwise do not have full control of their hands but have sufficient control of

their heads. In this work, the entire input process of face tracking user interfaces was divided into

logical and functional components namely, user input, capture technology, feature retrieval,

feature processing/filtering, and pointer behavior. Different options were evaluated for each

component and considerations for their selection were given. These options were implemented

and their performance in a user interface was quantitatively measured. Some qualitative

evaluation on their usability as far as they have been tested and observed was also made.

Among other results of this research are the following findings. It was determined that

the SeeingMachines faceAPI library and the Microsoft Face Tracking SDK are leading face

tracking engines that could enable a face tracking user interface. Depth data from depth-capable

sensors may be helpful but is not necessary for good performance. Location-based tracking is

still better to use than orientation-based tracking. Filters have to be implemented to improve the

ability of users to point by both minimizing the noise from the face tracking engine and by

minimizing consequential lag and inertia.

Other challenges of designing and implementing face tracking user interfaces using

consumer devices were also discussed. These challenges together with design and usability

www.manaraa.com

76

requirements necessitate a sufficiently high level of accuracy and robustness to the face tracking

engine and the processing of its output.

The tests that were used also provided a good method of comparison of performance of

face tracking user interfaces. Because these tests can be performed in several major Internet

browsers, it is planned to have these tests be published on the Internet as a web application for

use as a standard for other user interfaces that are designed to control a computer pointer.

This work can be expanded or used in several ways. First, since all the tests here were

done by a single user, it is possible that certain options may be more suitable for some users than

others. For example, with a particular face tracking engine, detection and tracking may work

better for one user than for another because of the features of the user’s face. Or using velocity

pointers may be easier (e.g. possibly for some users with some spasticity in their face

movement). In any case, it would be important to have the options presented here or

combinations of them be evaluated in a full-scale usability test. Doing so may help uncover

issues that might be present but are not easily detectable in the single user tests that were done

(e.g. possible learnability issues).

There is also significant work that can be done on the individual components. While there

are many, some of these include:

• Identification, implementation, and evaluation of techniques that can accomplish

face detection and tracking in video sequences that is comparable to or exceeds

the performance of faceAPI / MS Face Tracking and which will be made

available to the open-source community

• Investigation of visual feedback techniques that will help with usability which

was not in the scope of this research

www.manaraa.com

77

• Evaluation of the feasibility, implementation, and usability of triggering special

commands using face gestures which was discussed here and even implemented

for completeness but was not evaluated.

As computing theory and technology advances, work should be done in using them to

provide valuable services to the people. These services can be more personally significant to

individuals who have to deal with disadvantages and disabilities in life. It has been the aim of

this research to investigate and solve technical problems in helping individuals be able to use

their heads (by necessity or preference) to control a personal computer and this has been

accomplished to a degree although certainly, much more can be done.

www.manaraa.com

78

REFERENCES

Adafruit Industries, "The Open Kinect Project – the Ok Prize – Get $3,000 Bounty for Kinect for
Xbox 360 Open Source Drivers" http://www.adafruit.com/blog/2010/11/04/the-open-
kinect-project-the-ok-prize-get-1000-bounty-for-kinect-for-xbox-360-open-source-
drivers/ (accessed May 2012 2012).

Aldoma, A. "Progress on Head Detection and Pose Estimation (Ii)." In PCL Developers blog,
2012, 2012.

Arif, A. S., and W. Stuerzlinger. "Analysis of Text Entry Performance Metrics." In Science and
Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, 100-
105, 2009.

Balasubramanian, V. N., Y. Jieping, and S. Panchanathan. "Biased Manifold Embedding: A
Framework for Person-Independent Head Pose Estimation." In Computer Vision and
Pattern Recognition, 2007. CVPR '07. IEEE Conference on, 1-7, 2007.

Besl, P. J., and H. D. McKay. "A Method for Registration of 3-D Shapes." Pattern Analysis and
Machine Intelligence, IEEE Transactions on 14, no. 2 (1992): 239-256.

Betke, M., J. Gips, and P. Fleming. "The Camera Mouse: Visual Tracking of Body Features to
Provide Computer Access for People with Severe Disabilities." Neural Systems and
Rehabilitation Engineering, IEEE Transactions on 10, no. 1 (2002): 1-10.

Bhandarkar, S. M., and X. Luo. "Integrated Detection and Tracking of Multiple Faces Using
Particle Filtering and Optical Flow-Based Elastic Matching." Computer Vision and Image
Understanding 113, no. 6 (2009): 708-725.

Bilmes, J. A., X. Li, J. Malkin, K. Kilanski, R. Wright, K. Kirchhoff, A. Subramanya, S. Harada,
J. A. Landay, P. Dowden, and H. Chizeck. "The Vocal Joystick: A Voice-Based Human-
Computer Interface for Individuals with Motor Impairments." In Proceedings of the
conference on Human Language Technology and Empirical Methods in Natural
Language Processing, 995-1002. Vancouver, British Columbia, Canada: Association for
Computational Linguistics, 2005.

www.manaraa.com

79

Chathuranga, S. K., K. C. Samarawickrama, H. M. L. Chandima, K. G. T. D. Chathuranga, and
A. M. H. S. Abeykoon. "Hands Free Interface for Human Computer Interaction." In
Information and Automation for Sustainability (ICIAFs), 2010 5th International
Conference on, 359-364, 2010.

Dementhon, D. F., and L. S. Davis. "Model-Based Object Pose in 25 Lines of Code." Int. J.
Comput. Vision 15, no. 1-2 (1995): 123-141.

Di, H., S. Caifeng, M. Ardabilian, W. Yunhong, and C. Liming. "Local Binary Patterns and Its
Application to Facial Image Analysis: A Survey." Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 41, no. 6 (2011): 765-781.

Fagiani, C., M. Betke, and J. Gips. "Evaluation of Tracking Methods for Human-Computer
Interaction." In Applications of Computer Vision, 2002. (WACV 2002). Proceedings.
Sixth IEEE Workshop on, 121-126, 2002.

Fanelli, G., J. Gall, and L. V. Gool. "Real Time 3d Head Pose Estimation: Recent Achievements
and Future Challenges." In Communications, Control and Signal Processing, 2012.
ISCCSP 2012. 5th International Symposium on, 2012.

Fanelli, G., T. Weise, J. Gall, and L. V. Gool. "Real Time Head Pose Estimation from Consumer
Depth Cameras." In DAGM'11. Frankfurt, Germany, 2011.

Froba, B., and A. Ernst. "Face Detection with the Modified Census Transform." In Automatic
Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference
on, 91-96, 2004.

Gips, J., and P. Olivieri. "Eagleeyes: An Eye Control System for Persons with Disabilities." In
Eleventh International Conference on Technology and Persons with Disabilities. Los
Angeles, 1996.

Gorodnichy, D. Perceptual Cursor - a Solution to the Broken Loop Problem in Vision-Based
Hands-Free Computer Control Devices. 2006.

Gorodnichy, D. O. "On Importance of Nose for Face Tracking." In Automatic Face and Gesture
Recognition, 2002. Proceedings. Fifth IEEE International Conference on, 181-186, 2002.

Gorodnichy, D. O., and G. Roth. "Nouse ‘Use Your Nose as a Mouse’ Perceptual Vision
Technology for Hands-Free Games and Interfaces." Image and Vision Computing 22, no.
12 (2004): 931-942.

gwr_press. "Kinect Confirmed as Fastest-Selling Consumer Electronics Device." In Guinness
World Records, 2012, 2011.

www.manaraa.com

80

Heikkil, H., #228, K.-J. R, and ih. "Simple Gaze Gestures and the Closure of the Eyes as an
Interaction Technique." In Proceedings of the Symposium on Eye Tracking Research and
Applications, 147-154. Santa Barbara, California: ACM, 2012.

Hongliang, J., L. Qingshan, L. Hanqing, and T. Xiaofeng. "Face Detection Using Improved Lbp
under Bayesian Framework." In Image and Graphics, 2004. Proceedings. Third
International Conference on, 306-309, 2004.

Hunke, M., and A. Waibel. "Face Locating and Tracking for Human-Computer Interaction." In
Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth
Asilomar Conference on, 2, 1277-1281 vol.2, 1994.

Inhyuk, M., K. Kyunghoon, R. Jeicheong, and M. Museong. "Face Direction-Based Human-
Computer Interface Using Image Observation and Emg Signal for the Disabled." In
Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference
on, 1, 1515-1520 vol.1, 2003.

Instruments, O., "Headmouse® Extreme: Wireless Head Contolled Mouse"
http://www.orin.com/access/headmouse/ (accessed Nov 2012).

Istance, H., R. Bates, A. Hyrskykari, and S. Vickers. "Snap Clutch, a Moded Approach to
Solving the Midas Touch Problem." In Proceedings of the Eye Tracking Research and
Applications Symposium 2008, 221-228: ACM, 2008.

Jacob, R. J. K. "The Use of Eye Movements in Human-Computer Interaction Techniques: What
You Look at Is What You Get." ACM Trans. Inf. Syst. 9, no. 2 (1991): 152-169.

Jörgen, A. "Candide-3 - an Updated Parameterised Face." (2001).

Khoshelham, K., and S. O. Elberink. "Accuracy and Resolution of Kinect Depth Data for Indoor
Mapping Applications." Sensors 12, no. 2 (2012): 1437-1454.

Knies, R. "Academics, Enthusiasts to Get Kinect Sdk." 2012: Microsoft Research, 2011.

Kondori, F. A., S. Yousefi, L. Haibo, and S. Sonning. "3d Head Pose Estimation Using the
Kinect." In Wireless Communications and Signal Processing (WCSP), 2011 International
Conference on, 1-4, 2011.

Küblbeck, C., and A. Ernst. "Face Detection and Tracking in Video Sequences Using the
Modifiedcensus Transformation." Image and Vision Computing 24, no. 6 (2006): 564-
572.

M2PressWIRE. "Nuance Dragon Naturallyspeaking 10 - Speech Recognition That Changes
People's Lives; Nuance Announces Winners of the "I Speak Dragon" User Story Contest;
New Release Hailed by Users and Experts Alike." M2PressWIRE, 2008.

www.manaraa.com

81

Majaranta, P., U.-K. Ahola, and O. Špakov. "Fast Gaze Typing with an Adjustable Dwell Time."
In Proceedings of the SIGCHI conference on Human factors in computing systems, 357-
360. Boston, MA, USA: ACM, 2009.

Microsoft. "Kinect for Windows Human Interface Guidelines V1.5.0." (2012).
http://www.microsoft.com/en-us/kinectforwindows/develop/learn.aspx [accessed May
2012].

Ming-Hsuan, Y., D. J. Kriegman, and N. Ahuja. "Detecting Faces in Images: A Survey." Pattern
Analysis and Machine Intelligence, IEEE Transactions on 24, no. 1 (2002): 34-58.

Mingcai, Z., L. Lin, S. Jian, and W. Yangsheng. "Aam Based Face Tracking with Temporal
Matching and Face Segmentation." In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, 701-708, 2010.

Morris, T., and V. Chauhan. "Facial Feature Tracking for Cursor Control." Journal of Network
and Computer Applications 29, no. 1 (2006): 62-80.

MSDN, "Coordinate Spaces" http://msdn.microsoft.com/en-us/library/hh973078.aspx (accessed
Nov 2012).

Muchun, S., Y. Chinyen, L. Shihchieh, W. Pachun, and H. Shawmin. "An Implementation of an
Eye-Blink-Based Communication Aid for People with Severe Disabilities." In Audio,
Language and Image Processing, 2008. ICALIP 2008. International Conference on, 351-
356, 2008.

Murphy-Chutorian, E., and M. M. Trivedi. "Head Pose Estimation in Computer Vision: A
Survey." Pattern Analysis and Machine Intelligence, IEEE Transactions on 31, no. 4
(2009): 607-626.

Oxford Dictionaries, "The Oec: Facts About the Language"
http://oxforddictionaries.com/words/the-oec-facts-about-the-language (accessed Jan
2013).

Pan, H., Y. Zhu, and L. Xia. "Efficient and Accurate Face Detection Using Heterogeneous
Feature Descriptors and Feature Selection." Computer Vision and Image Understanding
117, no. 1 (2013): 12-28.

Point, N., "Smartnav" http://www.naturalpoint.com/smartnav/ (accessed Nov 2012).

Prasad, B. H. P., and R. Aravind. "A Robust Head Pose Estimation System for Uncalibrated
Monocular Videos." In Proceedings of the Seventh Indian Conference on Computer
Vision, Graphics and Image Processing, 162-169. Chennai, India: ACM, 2010.

www.manaraa.com

82

PrimeSense, "The Primesense 3d Awareness Sensor", PrimeSense Ltd
http://primesense.com/press-room/resources/file/4-primesense-3d-sensor-data-
sheet?lang=en (accessed May 2012 2012).

Reale, M., T. Hung, and Y. Lijun. "Pointing with the Eyes: Gaze Estimation Using a
Static/Active Camera System and 3d Iris Disk Model." In Multimedia and Expo (ICME),
2010 IEEE International Conference on, 280-285, 2010.

Rusu, R. B., and S. Cousins. "3d Is Here: Point Cloud Library (Pcl)." In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, 1-4, 2011.

Shotton, J., A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A.
Blake. "Real-Time Human Pose Recognition in Parts from Single Depth Images." In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 1297-
1304, 2011.

Smolyanskiy, N. "Face Tracking Sdk in Kinect for Windows 1.5." In My Random List, 2012,
2012.

Toan Thanh, D., D. Khiem Ngoc, L. Thai Hoang, and L. Bac Hoai. "Boosted of Haar-Like
Features and Local Binary Pattern Based Face Detection." In Computing and
Communication Technologies, 2009. RIVF '09. International Conference on, 1-8, 2009.

Tu, J., H. Tao, and T. Huang. "Face as Mouse through Visual Face Tracking." Computer Vision
and Image Understanding 108, no. 1–2 (2007): 35-40.

Tuisku, O., P. Majaranta, P. Isokoski, and K.-J. Räihä. "Now Dasher! Dash Away!: Longitudinal
Study of Fast Text Entry by Eye Gaze." In Proceedings of the 2008 symposium on Eye
tracking research & applications, 19-26. Savannah, Georgia: ACM, 2008.

Varona, J., C. Manresa-Yee, and F. J. Perales. "Hands-Free Vision-Based Interface for Computer
Accessibility." Journal of Network and Computer Applications 31, no. 4 (2008): 357-374.

Vazquez, L. J. G., M. A. Minor, and A. J. H. Sossa. "Low Cost Human Computer Interface
Voluntary Eye Movement as Communication System for Disabled People with Limited
Movements." In Health Care Exchanges (PAHCE), 2011 Pan American, 165-170, 2011.

Villaroman, N., D. Rowe, and B. Swan. "Teaching Natural User Interaction Using Openni and
the Microsoft Kinect Sensor." In Proceedings of the 2011 conference on Information
technology education, 227-232. West Point, New York, USA: ACM, 2011.

Villaroman, N. H. "Face Tracking User Interfaces Using Vision-Based Consumer Devices." In
Proceedings of the 14th international ACM SIGACCESS conference on Computers and
accessibility, 297-298. Boulder, Colorado, USA: ACM, 2012.

www.manaraa.com

83

Villaroman, N. H., and D. C. Rowe. "Improving Accuracy in Face Tracking User Interfaces
Using Consumer Devices." In Proceedings of the 1st Annual conference on Research in
information technology, 57-62. Calgary, Alberta, Canada: ACM, 2012.

Viola, P., and M. Jones. "Rapid Object Detection Using a Boosted Cascade of Simple Features."
In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on, 1, I-511-I-518 vol.1, 2001.

Wang, J.-G., and E. Sung. "Em Enhancement of 3d Head Pose Estimated by Point at Infinity."
Image and Vision Computing 25, no. 12 (2007): 1864-1874.

WebAIM, "Motor Disabilities: Assistive Technologies"
http://webaim.org/articles/motor/assistive (accessed July 2012 2012).

Weise, T., S. Bouaziz, H. Li, and M. Pauly. "Realtime Performance-Based Facial Animation."
ACM Trans. Graph. 30, no. 4 (2011): 1-10.

Xiaogang, Z., and H. Yanbo. "Face Tracking Based on Fusion Skin Color Model and Optical
Flow Algorithm." In Wireless Networks and Information Systems, 2009. WNIS '09.
International Conference on, 89-92, 2009.

Yagi, T. "Eye-Gaze Interfaces Using Electro-Oculography (Eog)." In Proceedings of the 2010
workshop on Eye gaze in intelligent human machine interaction, 28-32. Hong Kong,
China: ACM, 2010.

Yilmaz, A., O. Javed, and M. Shah. "Object Tracking: A Survey." ACM Comput. Surv. 38, no. 4
(2006): 13.

Yun, F., and T. S. Huang. "Graph Embedded Analysis for Head Pose Estimation." In Automatic
Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on, 6 pp.-
8, 2006.

Zhang, C., and Z. Zhang. "A Survey of Recent Advances in Face Detection." Microsoft
Research, no. MSR-TR-2010-66 (2010).
http://research.microsoft.com/apps/pubs/default.aspx?id=132077 [accessed June 2012].

Zheng, W., and S. M. Bhandarkar. "Face Detection and Tracking Using a Boosted Adaptive
Particle Filter." Journal of Visual Communication and Image Representation 20, no. 1
(2009): 9-27.

	Face Tracking User Interfaces Using Vision-Based Consumer Devices
	BYU ScholarsArchive Citation

	TITLE PAGE

	ABSTRACT

	TABLE OF CONTENTS

	LIST OF TABLES

	LIST OF FIGURES

	1 INTRODUCTION
	1.1 Real-World Problem
	1.2 Proposed User Interface
	1.3 Technical Problem
	1.3.1 Control in Higher Resolution Space
	Figure 1-1: Face Area and Movement Span

	1.3.2 Noise
	1.3.2.1 Capture Technology
	Figure 1-2: Microsoft Kinect Sensor Components Vision Processing

	1.3.2.2 Design and Implementation

	1.3.3 Retrieval of Feature Characteristics
	1.3.3.1 Feature Detection
	1.3.3.2 Feature Tracking
	1.3.3.3 Head Pose Estimation
	1.3.3.4 Face Gesture Detection

	1.4 Scope and Limitation
	1.5 Research Hypotheses
	Table 1-1: List of Hypotheses

	2 LITERATURE AND TECHNOLOGY REVIEW
	2.1 Hands-Free User Interfaces
	2.1.1 Face Tracking
	2.1.1.1 Eye Tracking

	2.1.2 Other Modalities

	2.2 Capture Technology
	2.3 Computer Vision Algorithms
	2.4 Vision Processing Libraries

	3 DESIGN, IMPLEMENTATION, AND EVALUATION
	3.1 Development Setup
	3.2 Input Components
	Figure 3-1: Input Components
	3.2.1 User Input
	3.2.1.1 Pointer Control
	Figure 3-2: User Input Options

	3.2.1.2 Selection Control and Other Commands
	Figure 3-3: Candide-3 Face Mask

	3.2.2 Capture Technology
	3.2.2.1 2D Image Cameras
	3.2.2.2 Consumer Depth Sensors
	3.2.2.3 Sensor Fusion (Depth and Color)

	3.2.3 Feature Retrieval
	3.2.3.1 Detection
	3.2.3.2 Tracking
	3.2.3.3 Head Pose Estimation
	3.2.3.4 Face Tracking Engines
	Figure 3-4: Face Detection and Tracking Using the MS Face Tracking SDK
	Figure 3-5: Face Detection and Tracking Using FaceAPI
	Figure 3-6: Head Detection and Pose Estimation Using Random Forests (DRRF)
	Figure 3-7: Face Detection Using the Haar Cascade Classifier

	3.2.4 Feature Data Processing
	3.2.5 Computer Input / Pointer Behavior
	Figure 3-8: Pointer Movement Options

	3.2.6 Summary of Input Components
	Table 3-1: List of Options and Possible Combinations

	3.3 Software Design
	Figure 3-9: Face Tracking User Interface Application Diagram
	Figure 3-10: Input Data Process (UML Sequence Diagram)

	3.4 Evaluation
	3.4.1 Point Spread of Stationary Head
	Figure 3-11: Pointer Spread Test

	3.4.2 Speed Pointing
	Figure 3-12: Speed Pointer Test

	3.4.3 Speed Typing
	Figure 3-13: Speed Typing Test - Before Start
	Figure 3-14: Speed Typing Test - Test Ongoing

	4 RESULTS AND ANALYSIS
	4.1 User Input
	Table 4-1: User Input Speed Pointing Results

	4.2 Face Tracking Engine
	Table 4-2: Comparison of Face Tracking Engines
	Table 4-3: Comparison of Head Pose Estimation of MSFT and FaceAPI

	4.3 Filters
	Figure 4-1: Comparison of Filter Performance from a Sample of Generated Points
	Table 4-4: Comparison of Feature Filters

	4.4 Computer Input/Pointer Behavior
	Table 4-5: Comparison of Pointer Behavior Options

	4.5 Summary of Results
	Table 4-6: Results by Hypotheses
	Table 4-7: Best Possible Combination from Results
	Table 4-8: Comparison with Existing Solutions

	5 CONCLUSION AND FUTURE WORK
	REFERENCES

